Graphene is an attractive material for all-optical modulation because of its ultrafast optical response and broad spectral coverage. However, all-optical graphene modulators reported so far require high pump fluence due to the ultrashort photo-carrier lifetime and limited absorption in graphene. We present modulator designs based on graphene-metal hybrid plasmonic metasurfaces with highly enhanced light-graphene interaction in the nanoscale hot spots at pump and probe (signal) wavelengths. Based on this design concept, we have demonstrated high-speed all-optical modulators at near and mid-infrared wavelengths (1.56 μm and above 6 μm) with significantly reduced pump fluence (1-2 orders of magnitude) and enhanced optical modulation. Ultrafast near-infrared pump-probe measurement results suggest that the modulators' response times are ultimately determined by graphene's ultrafast photocarrier relaxation times on the picosecond scale. The proposed designs hold the promise to address the challenges in the realization of ultrafast all-optical modulators for mid-and far-infrared wavelengths.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021307PMC
http://dx.doi.org/10.1038/s41377-022-00787-8DOI Listing

Publication Analysis

Top Keywords

all-optical modulation
8
based graphene-metal
8
graphene-metal hybrid
8
modulation ultrafast
8
pump fluence
8
all-optical modulators
8
ultrafast
5
all-optical
5
ultrafast low-pump
4
low-pump fluence
4

Similar Publications

Compact and full-range carbon dioxide sensor using photoacoustic and resonance dependent modes.

Photoacoustics

February 2025

Dipartimento di Scienze di Base ed Applicate per l'Ingegneria, Sapienza Università di Roma, Rome 00161, Italy.

A compact and robust optical excitation photoacoustic sensor with a self-integrated laser module excitation and an optimized differential resonator was developed to achieve high sensitivity and full linear range detection of carbon dioxide (CO) based on dual modes of wavelength modulated photoacoustic spectroscopy (WMPAS) and resonant frequency tracking (RFT). The integrated laser module equipped with three lasers (a quantum cascade laser (QCL), a distributed feedback laser (DFB) and a He-Ne laser) working in a time-division multiplexing mode was used as an integrated set of spectroscopic sources for detection of the designated concentration levels of CO. With the absorption photoacoustic mode, the WMPAS detection with the QCL and DFB sources was capable of CO detection at concentrations below 20 %, yielding a noise equivalent concentration (NEC) as low as 240 ppt and a normalized noise equivalent absorption coefficient (NNEA) of 4.

View Article and Find Full Text PDF

Sub-picosecond biphasic ultrafast all-optical switching in ultraviolet band.

Nanophotonics

November 2024

College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.

Ultrafast all-optical control has been a subject of wide-spread attention as a method of manipulating optical fields using light excitation on extremely short time scales. As a fundamental form of ultrafast all-optical control, all-optical switching has achieved sub-picosecond switch speeds in the visible, infrared, and terahertz spectral regions. However, due to the lack of suitable materials, ultrafast all-optical control in the ultraviolet range remains in its early stages.

View Article and Find Full Text PDF

Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation.

Nanophotonics

April 2024

Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Two-dimensional (2D) layered materials exhibit strong light-matter interactions, remarkable excitonic effects, and ultrafast optical response, making them promising for high-speed on-chip nanophotonics. Recently, significant attention has been directed towards anisotropic 2D materials (A2DMs) with low in-plane crystal symmetry. These materials present unique optical properties dependent on polarization and direction, offering additional degrees of freedom absent in conventional isotropic 2D materials.

View Article and Find Full Text PDF

Directionally tunable co- and counterpropagating photon pairs from a nonlinear metasurface.

Nanophotonics

August 2024

ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.

Article Synopsis
  • * This study showcases the first-ever precise control of the emission angle for photon pairs generated in a nonlinear metasurface, achieving high-quality coincidence ratios in the emitted light.
  • * A silicon dioxide grating on a nonlinear lithium niobate layer was used to facilitate this control, and the findings suggest potential for further improvements through modulation techniques, enhancing the capabilities of photon-pair sources.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!