Autorotating samaras have evolved to propagate successfully to their germination sites with the help of wind. This wind, in turn, is inherently unsteady across an extensive range of scales in the atmospheric boundary layer. To generate lift, samaras rely on the formation of a stably-attached leading-edge vortex (LEV) on the suction side of their wings. The kinematics of autorotating samaras experiencing gusts were examined experimentally in order to provide insights into the aerodynamic mechanisms responsible for successful propagation. The gust response of seven mature Boxelder Maple () samaras was investigated using a small unsteady wind tunnel able to create vertical gusts. Interestingly, the samaras were found to have a stable tip-speed ratio () during the gust phase, thus suggesting that the LEV remained stably-attached. Inspired by samaras, we designed a three-bladed rotor that incorporates key aerodynamic and geometric properties of samaras so as to exhibit a stably-attached LEV. The gust response of the samara-inspired rotor was examined using a towing-tank facility. The gust was emulated in the towing tank by accelerating the rotor from an initial steady speed to a final steady speed. Different gust intensities were tested by varying the rotor's normalized inertia number (*) by systematically increasing the rotor moment of inertia (). Similar to the natural samaras, the rotor exhibited a robust tip-speed ratio during all simulated gusts. The rotor's tip-speed ratio increased by a maximum of 11% and 6% during the slowest and fastest simulated gusts, respectively. By maintaining a stable tip-speed ratio during the gust, the samara-inspired rotor is thought to maintain stable LEVs resulting in stable autorotation. Therefore, by learning from the samara-inspired rotor, we suggest that samaras propagate successfully from their parent trees in unsteady (realistic) environments in part due to their robust autorotation properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/ac68bb | DOI Listing |
Sci Robot
May 2022
Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China.
Among small rotorcraft, the use of multiple compact rotors in a mechanically simple design leads to impressive agility and maneuverability but inevitably results in high energetic demand and acutely restricted endurance. Small spinning propellers used in these vehicles contrast with large lifting surfaces of winged seeds, which spontaneously gyrate into stable autorotation upon falling. The pronounced aerodynamic surfaces and delayed stalls are believed key to efficient unpowered flight.
View Article and Find Full Text PDFBioinspir Biomim
May 2022
Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
Autorotating samaras have evolved to propagate successfully to their germination sites with the help of wind. This wind, in turn, is inherently unsteady across an extensive range of scales in the atmospheric boundary layer. To generate lift, samaras rely on the formation of a stably-attached leading-edge vortex (LEV) on the suction side of their wings.
View Article and Find Full Text PDFBioinspir Biomim
December 2019
Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON, Canada.
The stability of leading-edge vortices (LEVs) on a samara-inspired rotor during steady and unsteady gusty incoming flow was investigated experimentally using direct rotational speed measurements, as well as time-resolved particle image velocimetry (PIV). The blades of the samara-inspired rotor were designed to match the tip-speed ratio, the aspect ratio, and the distribution of the effective angle of attack of samara seeds to utilize LEVs similar to samara seeds. The flow around the blades of the samara-inspired rotor was compared to a reference rotor, which possesses a constant spanwise effective angle of attack, to investigate the influence of the samara-like spanwise effective angle-of-attack distribution on LEV stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!