Determination of the site preference on the structure, magnetism and mechanical anisotropy properties of Mo-containing alloy carbide MC (MFe, Mo).

J Phys Condens Matter

The State Key Laboratory for Refractories and Metallurgy, China International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, School of Science, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.

Published: May 2022

First-principles calculations are used to study the structure, magnetism and mechanical anisotropy properties of MC (M = Fe, Mo) carbides. The stability of alloy carbide MC can be improved when Mo atoms occupy the 48f Wyckoff position. FeMoC with Mo atoms occupying 48f position and Fe atoms occupying 16d and 32e positions has the best structural stability. The magnetic moment is triggered when the Fe content is approximately 0.5, suggesting that there exists a critical value between the paramagnetic nature and ferromagnetism. Carbides with Fe content above 0.5 have stronger magnetism. Higher Fe content corresponds to the stronger chemical bonding of carbides, resulting in improved elastic properties when Mo atoms are held in 48f position. The special carbides FeMoC and FeMoC (Fe at 48f site, Mo at 16d and 32e sites) correspond to the excellent mechanical properties. These results are helpful in providing a theoretical foundation of the possible direction for the advances of the excellent physical properties in Mo-containing steel.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac68bdDOI Listing

Publication Analysis

Top Keywords

structure magnetism
8
magnetism mechanical
8
mechanical anisotropy
8
anisotropy properties
8
properties mo-containing
8
alloy carbide
8
atoms occupying
8
48f position
8
16d 32e
8
properties
5

Similar Publications

Previous research has shown that smoking tobacco is associated with changes or differences in brain volume and cortical thickness, resulting in a smaller brain volume and decreased cortical thickness in smokers compared with non-smokers. However, the effects of smokeless tobacco on brain volume and cortical thickness remain unclear. This study aimed to investigate whether the use of shammah, a nicotine-containing smokeless tobacco popular in Middle Eastern countries, is associated with differences in brain volume and thickness compared with non-users and to assess the influence of shammah quantity and type on these effects.

View Article and Find Full Text PDF

: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.

View Article and Find Full Text PDF

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.

View Article and Find Full Text PDF

Background: In this study, two chalcone analogs were synthesized through in silico and experimental methods, and their potential to inhibit the lipoxygenase enzyme, which plays a role in the inflammation pathway, was assessed. Specifically, this study is a continuation of previous research in which chalcone derivatives were synthesized and characterized.

Objectives/methods: In the current work, we present the re-synthesis of two chalcones, with a focus on their docking studies, NMR analysis, and dynamic simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!