This study aimed to examine the satisfaction level differences between urban and rural areas with regard to their walking environment during the COVID-19 pandemic in South Korea. This online cross-sectional research was conducted using a mobile health application. Overall, 1,032 local residents who participated in the mobile healthcare program of a public health center were classified as being from either urban (n = 481, 46.6%) or rural areas (n = 551, 53.4%) for the purpose of this study. The Walkability Checklist, which includes sociodemographic information, was employed using a Chi-square test and a multivariate logistic regression to investigate whether or not the participants were satisfied with the environmental factors associated with walking. It was found that both urban and rural areas were more likely to be unsatisfied with walking comfort (adjusted OR: 24.472, 95% CI: 14.937-40.096). Regarding the walking comfort aspects of the walking environment, urban residents chose poor landscape ("needed more grass, flowers, or trees"; aOR: 13.561, 95% CI: 3.619-50.823) as their primary dissatisfaction, and rural residents chose messy streets ("dirty, lots of litter or trash"; aOR: 29.045, 95% CI: 6.202-136.015). Compared with urban residents, rural residents were more discontented with the walking environment. Thus, to promote walking activities at the community level, it is necessary to focus on walking comfort, and implement efforts related to environmental beautification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020742 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266183 | PLOS |
Vaccines (Basel)
December 2024
College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
Background/objectives: Rural communities in the United States experience increased disparity of care for both general healthcare services and access to routine vaccines. Previous research has indicated a 40% lower vaccination rate in rural communities, as compared to urban counterparts. Having a better understanding regarding factors influencing lower vaccination rates in rural areas could help public health officials prepare for future vaccination efforts.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Expanded Program on Immunization, Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China.
Objectives: This study aimed to evaluate the safety profile of the recombinant zoster vaccine (RZV) after its marketing in China.
Methods: We present a descriptive analysis and safety signal assessment of adverse events following immunization (AEFI) associated with RZV between September 2020 and December 2023. The descriptive data collected includes demographic characteristics and the classification of characteristics of AEFI cases, while vaccine safety signal assessment was evaluated using the reporting odds ratio (ROR).
Sensors (Basel)
December 2024
The Abdus Salam International Centre for Theoretical Physics (ICTP), 34151 Trieste, Italy.
Visual examination of nails can reflect human health status. Diseases such as nutritive imbalances and skin diseases can be identified by looking at the colors around the plate part of the nails. We present the AI-based NAILS method to detect fingernails through segmentation and labeling.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China.
In orchard environments, negative obstacles such as ditches and potholes pose significant safety risks to robots working within them. This paper proposes a negative obstacle detection method based on LiDAR tilt mounting. With the LiDAR tilted at 40°, the blind spot is reduced from 3 m to 0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
There are discrepancies that exist in the effects of different land uses on soil organic carbon (SOC) and soil microbial carbon metabolism functions. However, the impact of land-use type changes on soil microbial carbon metabolism in alpine grassland arid areas is not well understood, hindering our understanding of the carbon cycling processes in these ecosystems. Therefore, we chose three types of land use (continuous reclamation of grassland (RG), abandoned grassland (AG), and natural grazing grassland (GG)) to study the microbial carbon metabolism and its driving factors by the Biolog-ECO method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!