Predicting the functional impact of KCNQ1 variants with artificial neural networks.

PLoS Comput Biol

Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America.

Published: April 2022

Recent advances in experimental and computational protein structure determination have provided access to high-quality structures for most human proteins and mutants thereof. However, linking changes in structure in protein mutants to functional impact remains an active area of method development. If successful, such methods can ultimately assist physicians in taking appropriate treatment decisions. This work presents three artificial neural network (ANN)-based predictive models that classify four key functional parameters of KCNQ1 variants as normal or dysfunctional using PSSM-based evolutionary and/or biophysical descriptors. Recent advances in predicting protein structure and variant properties with artificial intelligence (AI) rely heavily on the availability of evolutionary features and thus fail to directly assess the biophysical underpinnings of a change in structure and/or function. The central goal of this work was to develop an ANN model based on structure and physiochemical properties of KCNQ1 potassium channels that performs comparably or better than algorithms using only on PSSM-based evolutionary features. These biophysical features highlight the structure-function relationships that govern protein stability, function, and regulation. The input sensitivity algorithm incorporates the roles of hydrophobicity, polarizability, and functional densities on key functional parameters of the KCNQ1 channel. Inclusion of the biophysical features outperforms exclusive use of PSSM-based evolutionary features in predicting activation voltage dependence and deactivation time. As AI is increasingly applied to problems in biology, biophysical understanding will be critical with respect to 'explainable AI', i.e., understanding the relation of sequence, structure, and function of proteins. Our model is available at www.kcnq1predict.org.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060377PMC
http://dx.doi.org/10.1371/journal.pcbi.1010038DOI Listing

Publication Analysis

Top Keywords

pssm-based evolutionary
12
evolutionary features
12
functional impact
8
kcnq1 variants
8
artificial neural
8
protein structure
8
key functional
8
functional parameters
8
parameters kcnq1
8
biophysical features
8

Similar Publications

Background: Antioxidant proteins are involved in several biological processes and can protect DNA and cells from the damage of free radicals. These proteins regulate the body's oxidative stress and perform a significant role in many antioxidant-based drugs. The current invitro-based medications are costly, time-consuming, and unable to efficiently screen and identify the targeted motif of antioxidant proteins.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are central to key functions such as post-transcriptional regulation, mRNA stability, and adaptation to varied environmental conditions in prokaryotes. While the majority of research has concentrated on eukaryotic RBPs, recent developments underscore the crucial involvement of prokaryotic RBPs. Although computational methods have emerged in recent years to identify RBPs, they have fallen short in accurately identifying prokaryotic RBPs due to their generic nature.

View Article and Find Full Text PDF

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information.

View Article and Find Full Text PDF

Sequence-based prediction of DNA-binding residues in a protein is a widely studied problem for which machine learning methods with continuously improving predictive power have been developed. Concatenated rows within a sliding window of a Position Specific Substitution Matrix (PSSM) of the protein are currently used as the primary feature set in almost all the methods of predicting DNA-binding residues. Here we report that these evolutionary profiles are powerful, only for identifying conserved binding sites and fall short for the residue positions which undergo binding to non-binding transitions in closely related proteins.

View Article and Find Full Text PDF

Recent advances in experimental and computational protein structure determination have provided access to high-quality structures for most human proteins and mutants thereof. However, linking changes in structure in protein mutants to functional impact remains an active area of method development. If successful, such methods can ultimately assist physicians in taking appropriate treatment decisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!