Nanoscale manipulation and patterning usually require costly and sensitive top-down techniques such as those used in scanning probe microscopies or in semiconductor lithography. DNA nanotechnology enables exploration of bottom-up fabrication and has previously been used to design self-assembling components capable of linear and rotary motion. In this work, we combine three independently controllable DNA origami linear actuators to create a nanoscale robotic printer. The two-axis positioning mechanism comprises a moveable gantry, running on parallel rails, threading a mobile sleeve. We show that the device is capable of reversibly positioning a write head over a canvas through the addition of signaling oligonucleotides. We demonstrate "write" functionality by using the head to catalyze a local DNA strand-exchange reaction, selectively modifying pixels on a canvas. This work demonstrates the power of DNA nanotechnology for creating nanoscale robotic components and could find application in surface manufacturing, biophysical studies, and templated chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scirobotics.abn5459DOI Listing

Publication Analysis

Top Keywords

dna nanotechnology
8
nanoscale robotic
8
dna
5
dna molecular
4
molecular printer
4
printer capable
4
capable programmable
4
programmable positioning
4
positioning patterning
4
patterning dimensions
4

Similar Publications

Folding and Functionalizing DNA Origami: A Versatile Approach Using a Reactive Polyamine.

J Am Chem Soc

January 2025

Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Ed. I+D+i. Mariano Esquillor, Zaragoza 50018, Spain.

DNA nanotechnology is a powerful synthetic approach to crafting diverse nanostructures through self-assembly. Chemical decoration of such nanostructures is often required to tailor their properties for specific applications. In this Letter, we introduce a pioneering method to direct the assembly and enable the functionalization of DNA nanostructures using an azide-bearing functional polyamine.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

DNA nanotechnology-based strategies for gastric cancer diagnosis and therapy.

Mater Today Bio

February 2025

Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China.

Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC.

View Article and Find Full Text PDF

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!