The effective potency and resistance of poly(ADP-ribose) polymerase (PARP) inhibitors limit their application. Here, we exploit a new paradigm that mimics the effects of breast cancer susceptibility genes (BRCA) mutations to trigger the possibility of synthetic lethality, based on the previous discovery of a potential synthetic lethality effect between bromodomain-containing protein 4 (BRD4) and PARP1. Consequently, the present study describes compound with high selectivity for BRD4 and PARP1. Fortunately, inhibits the homologous recombination in triple-negative breast cancer (TNBC) and triggers synthetic lethality, thus leading to cell cycle arrest and DNA damage. In conclusion, we optimized the BRD4-PARP1 inhibitor based on previous studies, and we expect it to become a candidate drug for the treatment of TNBC in the future. This strategy aims to expand the use of PARPi in BRCA-competent TNBC, making an innovative approach to address unmet oncology needs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c00135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!