A multifunctional microspheric soil conditioner based on chitosan-grafted poly(acrylamide--acrylic acid)/biochar [CS--P(AM--AA)/BC] was prepared. First, the P(AM--AA) was synthesized and successfully grafted onto CS, and the three-dimensional network structure of microspheres was formed with ,-methylenebis(acrylamide) as the cross-linking agent according to the inverse suspension polymerization method. Meanwhile, BC and urea were encapsulated into the body of microspheres during the polymerization. The structure of the microspheres was analyzed by Fourier transform infrared spectroscopy, polarized optical microscopy, and scanning electron microscopy, and the mechanism of adsorption of Cu on the microspheres was investigated by X-ray photoelectron spectroscopy. Furthermore, the experimental results demonstrated the excellent water absorption and retention capabilities of microspheres, and the release rate of urea was dramatically reduced. Importantly, the introduction of BC significantly enhanced the adsorption performance of the microspheres with respect to heavy metal ions. Consequently, the multifunctional soil conditioner held promise for use in soil improvement and agricultural production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c00317 | DOI Listing |
Chempluschem
January 2025
Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India.
The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil. Electronic address:
The growing demand for sustainable solutions in agriculture, driven by global population growth and increasing soil degradation, has intensified the search for sustainable soil conditioners. This study investigated the impact of adding nanoclay (NC) and nano lignin (NL) to thermoplastic starch (TPS) on its physical, chemical, and thermal properties, its effectiveness as a soil conditioner, and its resistance to UV-C degradation. TPS nanocomposites were prepared with varying NC (3 %, 5 %, 7 %) and NL (0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran. Electronic address:
Acrylamide has high hydrophilic properties due to the presence of hydrophilic amide functional groups and is frequently used to synthesize superabsorbents. However, the toxic and carcinogenic properties of acrylamide have caused environmental concerns. The main goal of this paper is the synthesis of superabsorbent with high water absorption from biodegradable and biocompatible cellulose polymer containing amide groups in the backbone of it instead of grafting harmful acrylamide monomers to cellulose.
View Article and Find Full Text PDFMicroorganisms
November 2024
Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, No. 2238 Beijing Road, Kunming 650221, China.
Continuous cropping problems constitute threats to perennial plant health and survival. Soil conditioners have the potential to enhance plant disease resistance in continuous cropping systems. However, how microbes and metabolites of the rhizosphere respond to soil conditioner addition remains largely unknown, but this knowledge is paramount to providing innovative strategies to enhance plant adaptation in continuous cropping systems.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360 Keszthely, Hungary.
The study investigated the application of humic acids (HAs) and a combination of humic acids and amino acids (HA+AA) in maize under field conditions. Based on preliminary data in the literature, the aim was to investigate the effects of the two plant conditioning compounds on plant physiological parameters. In addition to measuring plant physiological parameters in the field, a complete transcriptome analysis was performed to determine exactly which genes were expressed after the treatments and in which physiological processes they play a role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!