This perspective challenges our current understanding of the marine carbon cycle, including an alternative explanation of bulk C-DOM measurements. We propose the adoption of the carbon reactivity continuum concept previously established for lakes and sediments for the oceans using kinetic data and term this the marine DOM reactivity continuum. We need to gain a fundamental understanding of the biogeochemical drivers of surface water DOM concentrations and reactivity, biological carbon pump efficiency, and the autotrophic communities that are the ultimate but variable sources of marine DOM. This perspective is intended to shift our focus to a more inclusive kinetic model and may lead us to a more accurate assessment of the active and dynamic role marine DOM plays in the global carbon cycle. Currently, the kinetic data to establish and validate such a marine DOM reactivity continuum model are still lacking, and their resolution depends on the discovery of new organic tracers that span large differences in reactivity and microbial degradation rates. We may need to refocus our efforts in deciphering the structure and reactivity of marine organic molecules in a kinetic context, including the microbial and physicochemical constraints on molecular reactivity that are present in the deep ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069685 | PMC |
http://dx.doi.org/10.1021/acs.est.1c08871 | DOI Listing |
Chem Asian J
December 2024
Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P 517619, India.
Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.
View Article and Find Full Text PDFThis study investigates whether lower self-regulation (SR) facets are risk factors for internalizing symptoms (vulnerability models), consequences of these symptoms (scar models), or develop along the same continuum and thus share common causes (spectrum models) during middle childhood. To analyze these models simultaneously, a random intercept cross-lagged panel model was estimated using Mplus. Data were assessed at three measurement time points in a community-based sample of = 1657 (52.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Botany, University of Kashmir, Srinagar, 190006 India.
Petal senescence represents a crucial phase in the developmental continuum of flowers, ensuing tissue differentiation and petal maturation, yet anteceding seed formation and development. Instigation of petal senescence entails myriad of changes at the cytological, physiological and molecular dimensions, mirroring the quintessential characteristics of cell death. In the current investigation biochemical and molecular intricacies were scrutinized across various developmental stages (bud to the senescent phase).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.
View Article and Find Full Text PDFJ Mol Model
December 2024
Department of Chemistry, Faculty of Science, Ege University, TR-35100, Bornova, Izmir, Türkiye.
Context: Isatin-Schiff bases have wide applications in chemistry. The π conjugated electronic system and heterocylic structure of these materials make them valuable for use as photosensitized materials. The delocalization of π-electrons throughout the structure causes the UV-vis absorption spectra to shift to longer wavelengths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!