Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Currently, selection of patients for sequential versus concurrent chemotherapy and radiation regimens lacks evidentiary support and it is based on locally optimal decisions for each step.
Objective: We aim to optimize the multistep treatment of patients with head and neck cancer and predict multiple patient survival and toxicity outcomes, and we develop, apply, and evaluate a first application of deep Q-learning (DQL) and simulation to this problem.
Methods: The treatment decision DQL digital twin and the patient's digital twin were created, trained, and evaluated on a data set of 536 patients with oropharyngeal squamous cell carcinoma with the goal of, respectively, determining the optimal treatment decisions with respect to survival and toxicity metrics and predicting the outcomes of the optimal treatment on the patient. Of the data set of 536 patients, the models were trained on a subset of 402 (75%) patients (split randomly) and evaluated on a separate set of 134 (25%) patients. Training and evaluation of the digital twin dyad was completed in August 2020. The data set includes 3-step sequential treatment decisions and complete relevant history of the patient cohort treated at MD Anderson Cancer Center between 2005 and 2013, with radiomics analysis performed for the segmented primary tumor volumes.
Results: On the test set, we found mean 87.35% (SD 11.15%) and median 90.85% (IQR 13.56%) accuracies in treatment outcome prediction, matching the clinicians' outcomes and improving the (predicted) survival rate by +3.73% (95% CI -0.75% to 8.96%) and the dysphagia rate by +0.75% (95% CI -4.48% to 6.72%) when following DQL treatment decisions.
Conclusions: Given the prediction accuracy and predicted improvement regarding the medically relevant outcomes yielded by this approach, this digital twin dyad of the patient-physician dynamic treatment problem has the potential of aiding physicians in determining the optimal course of treatment and in assessing its outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069283 | PMC |
http://dx.doi.org/10.2196/29455 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!