Cancer remains the leading cause of death in the world despite the significant advancements made in anticancer drug discovery. This study is aimed to computationally evaluate the efficacy of 63 in-house synthesized pyrazole derivatives targeted to bind with prominent cancer targets namely EGFR, RSK1, RAF1, PARP2 and LIN28B known to be expressed, respectively, in lung, colon, skin, ovarian and pancreatic cancer cells. Initially, we perform the molecular docking investigations for all pyrazole compounds with a comparison to known standard drugs for each target. Docking studies have revealed that some pyrazole compounds possess better binding affinity scores than standard drug compounds. Thereafter, a long-range of 1 μs molecular dynamic (MD) simulation study for top ranked docked compounds with all respective proteins was carried out to assess the interaction stability in a dynamic environment. The results suggested that the top ranked complexes showed a stable interaction profile for a longer period of time. The outcome of this study suggests that pyrazole compounds, M33, M36, M76 and M77, are promising molecular candidates that can modulate the studied target proteins significantly in comparison to their known inhibitor based on their selective binding interactions profile. Furthermore, ADME-T profile has been explored to check for the drug-likeness and pharmacokinetics profiles and found that all proposed compounds exhibited acceptable values for being a potential drug-like candidate with non-toxic characteristics. Overall, extensive computational investigations indicate that the four proposed pyrazole inhibitors/modulators studied against each respective target protein will be helpful for future cancer therapeutic developments.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2064915 | DOI Listing |
Mini Rev Med Chem
January 2025
Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
Most natural products in nature have broad but not exceedingly good biological activities. The pyrazole structure has been introduced into natural products due to its suitability for various synthetic methods and its broad pharmacological activities. This article provides a detailed introduction to the anti-inflammatory, antibacterial, antifungal, antiviral, and anti-Alzheimer disease activities of pyrazole-modified natural product derivatives, particularly their anti-tumor activity.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC.
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
To evade legal controls, new psychoactive substances (NPS), which have been designed as substitutes for traditional and synthetic drugs, are gradually dominating the drug market. Synthetic cannabinoids (SCs), which account for the majority of NPS, are rapidly being derivatized; consequently, controlling increasing abuse by merely listing individual compounds is difficult. Therefore, China has included the entire SC category of SCs listed as legal controlled substances since July 1, 2021.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, B. P 7955 Casablanca, Morocco.
Background: The search for new antifungal agents is critical due to the rising resistance of fungal pathogens to existing treatments. This study focuses on the synthesis and evaluation of a novel compound, 1-benzyl-5-methyl-1H-pyrazole-3-carboxylic acid (compound L1), as a potential antifungal agent.
Methods: Compound L1 was synthesized and characterized using a range of analytical techniques, including 1H^1H1H NMR, 13C^{13}C13C NMR, FT-IR, GC-MS, and X-ray single crystal diffraction (XRD).
Med Chem
January 2025
Department of Chemistry, Faculty of Education, Van Yüzüncü Yil University, Van, Türkiye.
Background: Glioblastoma Multiforme (GBM), a highly aggressive and prevalent brain cancer with a higher incidence in males, has limited treatment success due to drug resistance, inadequate targeting and penetration of cancer cells, and an incomplete understanding of its molecular pathways. GBM is a highly aggressive brain cancer with limited treatment options. This study investigates the anticancer potential of synthesized pyrazole compounds against GBM cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!