Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. In this study, we performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand the genomic diversity. A retrospective collection of 498 M. tuberculosis isolates submitted to the National Institute for Research in Tuberculosis for phenotypic susceptibility testing between 2014 to 2016 were sequenced. Genotypic resistance prediction was performed using known resistance-conferring determinants. Genotypic and phenotypic results for 12 antituberculosis drugs were compared, and sequence data were explored to characterize lineages and their association with drug resistance. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction. Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. We performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand genomic diversity. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the rpoB gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241780 | PMC |
http://dx.doi.org/10.1128/spectrum.01594-21 | DOI Listing |
Sci Prog
January 2025
Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.
Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.
Curr Cancer Drug Targets
January 2025
Department of Chemistry, Siddhachalam Laboratory, Raipur, 493221, Chhattisgarh, India.
Objectives: The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.
Methods: To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine.
Curr Drug Targets
January 2025
Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
Acne vulgaris is the 8th most commonly prevailing skin disorder worldwide. Its pervasiveness has been predominant in juveniles, especially males, during adolescence and in females during adulthood. The lifestyle and nutrition adopted have been significantly reported to impact the occurrence and frequency of acne.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, P.R. China.
Garlic has been consumed globally as a functional food and traditional medicine for various ailments. Its active organosulfur compounds (OSCs) have demonstrated significant anticancer properties, particularly against gastric cancer. However, a comprehensive review of these effects and the underlying molecular mechanisms, including their role in overcoming drug resistance, is currently lacking.
View Article and Find Full Text PDFiScience
January 2025
Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with poor prognosis. Sorafenib, a first-line treatment for advanced HCC, has shown limited clinical benefits due to the onset of drug resistance. Thus, it is imperative to comprehend the mechanisms underlying sorafenib resistance and explore strategies to overcome or delay it.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!