A Hygroscopic Janus Heterojunction for Continuous Moisture-Triggered Electricity Generators.

ACS Appl Mater Interfaces

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.

Published: May 2022

Moisture-triggered electricity generator (MEG) harvesting energy from the ubiquity of atmospheric moisture is one of the promising potential candidates for renewable power demand. However, MEG device performance is strongly dependent on the moisture concentration, which results in its large fluctuation of the electrical output. Here, a Janus heterojunction MEG device consisting of nanostructured silicon and hygroscopic polyelectrolyte incorporating hydrophilic carbon nanotube mesh is proposed to enable ambient moisture harvesting and continuous stable electrical output delivery. The nanostructured silicon with a large surface/volume ratio provides strong coupling interaction with water molecules for charge generation. A polyelectrolyte of polydiallyl dimethylammonium chloride (PDDA) can facilitate charge selective transporting and enhance the effectiveness of moisture-absorbing in an arid environment simultaneously. The conductive, porous, and hydrophilic carbon nanotube mesh allows water to be ripped through as well as the generated charges being collected timely. As such, any generated charge carriers in the Janus heterojunction can be efficiently swept toward their respective electrodes, because of the device asymmetric contact. A MEG device continuously delivers an open-circuit voltage of 1.0 V, short-circuit current density of 8.2 μA/cm, and output power density of 2.2 μW/cm under an ambient environment (60% relative humidity, 25 °C), which is a record value over the previously reported values. Furthermore, the infrared thermal measurements also reveal that the moisture-triggered electricity generation power is likely ascribed to surrounding thermal energy collected by the MEG device. Our results provide an insightful rationale for the design of device structure and understanding of the working mechanism of MEG, which is of great importance to promote the efficient electricity conversion induced by moisture in the atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c02878DOI Listing

Publication Analysis

Top Keywords

meg device
16
janus heterojunction
12
moisture-triggered electricity
12
electrical output
8
nanostructured silicon
8
hydrophilic carbon
8
carbon nanotube
8
nanotube mesh
8
meg
6
device
6

Similar Publications

Corrigendum to "Extended homogeneous field correction method based on oblique projection in OPM-MEG" [NeuroImage 306(2025) 120991].

Neuroimage

January 2025

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:

View Article and Find Full Text PDF

Neural oscillations observed during semantic processing embody the function of brain language processing. Precise parameterization of the differences in these oscillations across various semantics from a time-frequency perspective is pivotal for elucidating the mechanisms of brain language processing. The superlet transform and cluster depth test were used to compute the time-frequency representation of oscillatory difference (ODTFR) between neural activities recorded by optically pumped magnetometer-based magnetoencephalography (OPM-MEG) during processing congruent and incongruent Chinese semantics.

View Article and Find Full Text PDF

Multiple Exciton Generation on Doped Wide-Band Semiconductor Photoanode with Hierarchical Quantum Structure.

Small

January 2025

Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.

The multiple exciton generation (MEG) effect, which produces multiple photo-generated charge carriers from a single high-energy photon absorption by a semiconductor with a narrow bandgap, has the potential to revolutionize photovoltaic, photoelectric detection, and other technologies. Here, this work finds that the surface carbon-modified wide-bandgap photoanode with hierarchical quantum structure can drive a photoelectrochemical reaction with a quantum efficiency exceeding 145% by the first time. More studies reveal that the presence of the MEG effect in the MEG-CdS photoanode is attributed to the formation of high-quality surface C-modified CdS quantum nanosheets on CdS bulk film by in situ, this hierarchical quantum structure leads to quantum confinement effects that increase effective Coulomb interaction for driving MEG and decrease competition for thermal exciton cooling.

View Article and Find Full Text PDF

Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays.

ACS Nano

January 2025

State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China.

Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material.

View Article and Find Full Text PDF

A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach.

Mater Horiz

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!