The increase in the atmospheric concentrations of carbon dioxide due to anthropogenic interventions has led to several undesirable consequences, notably global warming and related changes. Avoidance of and/or removal of carbon dioxide will result in the reduction of global warming. Biosequestration of carbon by using carbonic anhydrase (CA) as biocatalyst is one of most effective approaches. In the present study, actinobacterial cultures isolated from bamboo (Bambusa vulgaris) rhizosphere were screened for the production of carbonic anhydrase enzyme. The strain BS19 which showed promising CA production was selected as the potential strain. Strain BS19 was identified as Streptomyces kunmingensis based on the phenotypic and molecular characteristics. In submerged fermentation, strain BS19 produced 214.21 IU/ml of CA enzyme. The molecular mass of the CA was determined as 45 ± 2 kDa. The production of CA was found to be optimal at pH 7.0 and at temperature of 28 °C. The full length periplasmic CA gene was successfully amplified from S. kunmingensis BS19. Biomimetic sequestration of carbon was detected and quantified through CaCO precipitation method. Further, the CA of BS 19 was successfully used to mineralize CO present in motorbike exhaust, which has a similar composition to that of flue gas. The well-defined rhombohedral calcite crystals formed in the mineral carbonation reaction was observed through SEM analysis. The findings of this study clearly indicated that Streptomyces kunmingensis BS19 isolated from bamboo rhizosphere is a promising candidate for the production of carbonic anhydrase which deserves the potential for CO sequestration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-022-02887-w | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Chemistry, 800 Dongchuan Road, Minhang, 200240, Shanghai, CHINA.
Hydrogen sulfide (H2S) plays crucial inflammatory modulating roles, representing a promising candidate for anti-inflammatory therapies. However, current H2S delivery approaches lack sufficient specificity against inflammatory response. Herein, regarding the overexpressed aminopeptidase N (APN) at the inflammation sites, an APN-activated self-immolative carbonyl sulfide (COS)/H2S donor (AlaCOS) was developed for inflammatory response-specific H2S delivery.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2025
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, India.
This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
NEUROFARBA Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier, IBMM UMR 5247 - Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier, FRANCE.
Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!