High- Two-Dimensional Ferroelectric CuCrS Grown Chemical Vapor Deposition.

ACS Nano

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Published: May 2022

Two-dimensional (2D) ferroelectrics have attracted intensive attention. However, the 2D ferroelectrics remain rare, and especially few of them represent high ferroelectric transition temperature (), which is important for the usability of ferroelectrics. Herein, CuCrS nanoflakes are synthesized by salt-assisted chemical vapor deposition and exhibit switchable ferroelectric polarization even when the thickness is downscaled to 6 nm. On the contrary, a CuCrS nanoflake shows a as high as ∼700 K, which can be attributed to the robust tetrahedral bonding configurations of Cu cations. Such robustness can be further clarified by a theoretically predicted high order-disorder transition barrier and structure evolution from 600 to 800 K. Additionally, the interlocked out-of-plane (OOP) and in-plane (IP) ferroelectric domains are observed and two kinds of devices based on OOP and IP polarizations are demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c01470DOI Listing

Publication Analysis

Top Keywords

chemical vapor
8
vapor deposition
8
high- two-dimensional
4
ferroelectric
4
two-dimensional ferroelectric
4
ferroelectric cucrs
4
cucrs grown
4
grown chemical
4
deposition two-dimensional
4
two-dimensional ferroelectrics
4

Similar Publications

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Thermodynamic Properties of γ- and δ-Lactones: Exploring Alkyl Chain Length Effect and Ring-Opening Reactions for Green Chemistry Applications.

Molecules

January 2025

Centro de Investigação em Química (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.

An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both properties of each compound are reported at = 298.15 K.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have attracted significant attention in the scientific community and in the industrial environment due to their unique structure and remarkable properties, including mechanical strength, thermal stability, electrical conductivity, and chemical inertness. Despite their potential, large-scale applications have been limited by challenges such as high production costs and catalyst contamination. In aerospace applications, CNTs have demonstrated considerable promise either in the form of thin layers or as reinforcements in polymer and metal matrices, where they enhance mechanical, thermal, and electromagnetic performance in lightweight composites.

View Article and Find Full Text PDF

Concerns regarding the health risks associated with employe exposure to volatile chemicals during gasoline refueling necessitates rigorous investigation and effective countermeasures. This study aims to evaluate the efficacy of vapor recovery systems in mitigating exposure risks during gasoline refueling. Employee exposure to volatile organic compounds, aldehydes, carbon monoxide, and fine particulate matter (PM) was assessed at gasoline stations with and without vapor recovery systems.

View Article and Find Full Text PDF

Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils.

Foods

January 2025

Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.

In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% / solutions of ethanol, 3% / acetic acid solution, and isooctane, were among the critical studies conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!