A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A New Polystyrene-Poly(vinylpyridinium) Ionic Copolymer Dopant for n-Type All-Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor. | LitMetric

A novel n-type copolymer dopant polystyrene-poly(4-vinyl-N-hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm and high power factor of 67 µW m K are achieved for PSpF-doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm at 88 °C and outstanding thermal stability are recorded. Further, organic transistors of PSpF-doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm V s , respectively. The results suggest that polystyrene-poly(vinylpyridinium) salt copolymers with fluoride anions are promising for high-performance n-type all-polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to the Seebeck coefficient, high power factor, thermal stability, and broad processing window.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202201062DOI Listing

Publication Analysis

Top Keywords

high power
12
power factor
12
copolymer dopant
8
n-type all-polymer
8
all-polymer thermoelectrics
8
thermoelectrics high
8
conductivity relative
8
relative seebeck
8
seebeck coefficient
8
coefficient high
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!