A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly economic and waste valorization strategy for multicomponent and Knoevenagel reactions using water extract of tamarind seed ash. | LitMetric

The application of solid organic waste-originated products in the preparation of synthetically and biologically significant compounds in aqueous media or pure water is a highly desired task in chemical synthesis that shows an effective solution to the circular economy and sustainable environment. In this article, we describe our research on the development of highly economic and sustainable protocols for the synthesis of biologically important oxygen-heterocycles (using a multicomponent reaction) and synthetically important olefins (via the Knoevenagel condensation reaction) using water extract of tamarind seed ash (WETS) as catalyst and aqueous reaction medium. The reactions are carried out at room temperature (RT) under toxic/problematic/volatile organic solvent-free conditions. Products of the current methods have been purified by using recrystallization technique. WETS was characterized from its FTIR, powder XRD, SEM, and EDAX data. Problematic and non-renewable solvents were avoided throughout the process from their synthesis to purification. The utilization of solid organic waste-originated catalyst and aqueous media, avoid of non-renewable substances as catalysts, media, separation solvents and promoters, and unobligating heating conditions can surely attract the attention of chemists towards exploring the waste-based products in chemical transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-20124-1DOI Listing

Publication Analysis

Top Keywords

highly economic
8
water extract
8
extract tamarind
8
tamarind seed
8
seed ash
8
solid organic
8
organic waste-originated
8
aqueous media
8
catalyst aqueous
8
economic waste
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!