Co-digestion between sugarcane vinasse (Vn) and water hyacinth (WH) at various mixing ratios of 0:1, 1:0, 1:3, 3:1, and 1:1 was carried out under thermophilic conditions (55 °C) for 60 days. The effect of various mixing ratios on the pH changes, soluble chemical oxygen demand (sCOD) reduction, and cumulative biogas production was investigated. The first order, modified Gompertz, and logistic function kinetic models were selected to fit the experimental data. Model discrimination was conducted through the Akaike Information Criterion (AIC). The study revealed that co-digestion shows better performance compared to the mono-digestion of both substrates. Vn:WH mixing ratio 1:1 with inoculum to substrate ratio (ISR) of 0.38 g VS/g VS is the most favorable ratio, achieving sCOD reduction efficiency and cumulative biogas production of 71.6% and 1229 mL, respectively. Model selection through AIC revealed that ratio 1:1 was best fitted to the logistic function kinetic model (R = 0.9897) with Y and K values of 1232 mL and 31 mL/day, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-20251-9 | DOI Listing |
Biotechnol Biofuels Bioprod
January 2025
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea. Electronic address:
Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China.
Antimicrobial peptides (AMPs) are renowned for their potent bacteriostatic activity and safety, rendering them invaluable in animal husbandry, food safety, and medicine. Despite their potential, the physiological toxicity of AMPs to host cells significantly hampers their biosynthetic production. This study presents a novel approach for the biosynthesis of the antimicrobial peptide Kiadin by engineering a DAMP4-DPS-Kiadin fusion protein to mitigate host cell toxicity and achieve high-level expression.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Business Sciences - Management & Innovation Systems/DISA-MIS, University of Salerno, Italy.
This article aims to provide a systematic review of the literature on animal biomass and biogas plants through an analysis of externalities and benefits in economic, social, and environmental terms. In recent years, the spread of biogas plants has played an important role, especially in rural areas, generating benefits not only for the individual farm but for entire communities, contributing to the reduction of energy poverty and, at the same time, promoting the production of energy and organic manure. In light of the findings, the study argues that: (a) more public subsidies are needed; (b) the deployment of an appropriate policy mix would encourage the spread of small and medium-sized plants, with a reduction in road transport; and (c) targeted and diversified investments are needed on a geographic-by-geographic basis.
View Article and Find Full Text PDFACS ES T Eng
January 2025
Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States.
Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!