Molecular glasses are low-molecular-weight organic compounds that are stable in the amorphous state at room temperature. Herein, we report a state- and water repellency-controllable molecular glass by -alkane guest vapors. We observed that a macrocyclic host compound pillar[5]arene with the CF fluoroalkyl groups changes from the crystalline to the amorphous state (molecular glass) by heating above its melting point and then cooling to room temperature. The pillar[5]arene molecular glass shows reversible transitions between amorphous and crystalline states by uptake and release of the -alkane guest vapors, respectively. Furthermore, the -alkane guest vapor-induced reversible changes in the water contact angle were also observed: water contact angles increased and then reverted back to the original state by the uptake and release of the -alkane guest vapors, respectively, along with the changes in the chemical structure and roughness on the surface of the molecular glass. The water repellency of the molecular glass could be controlled by tuning the uptake ratio of the -alkane guest vapor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8985507PMC
http://dx.doi.org/10.1039/d2sc00828aDOI Listing

Publication Analysis

Top Keywords

molecular glass
24
-alkane guest
20
guest vapors
16
state- water
8
water repellency-controllable
8
repellency-controllable molecular
8
fluoroalkyl groups
8
amorphous state
8
room temperature
8
uptake release
8

Similar Publications

Studies on Plasmodium falciparum transmission require blood-feeding infectious gametocytes to mosquitoes using standard membrane-feeding assays (SMFAs). SMFAs are routinely performed using electric heating coils or glass membrane feeders connected to a circulatory water bath using tubing and clamps. Each of these approaches is expensive and requires a complex setup, hence restricting the number of assays that can be performed simultaneously.

View Article and Find Full Text PDF

Isolation method of brain microvessels from small frozen human brain tissue for blood-brain barrier protein expression analysis.

Fluids Barriers CNS

December 2024

Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.

Background: Protein expression analysis of isolated brain microvessels provides valuable insights into the function of the blood-brain barrier (BBB). However, isolation of brain microvessels from human brain tissue, particularly in small quantities, poses significant challenges. This study presents a method for isolating brain microvessels from a small amount of frozen human brain tissue, adapting techniques from an established mouse brain capillary isolation method.

View Article and Find Full Text PDF

Drug polymorphism attracts considerable interest within the pharmaceutical field. Herein, we investigate the impact of low-concentration poly(ethylene oxide) (PEO) on the crystal growth of carbamazepine (CBZ) polymorphs in the glassy state. The addition of 3%(w/w) PEO increases 5.

View Article and Find Full Text PDF

Regioselective Copolymerization of Glucose-Derived Allopyranoside Epoxide with Cyclic Anhydrides: Developing Precise Sugar-Functionalized Polyesters with Unique Altrose Linkages.

J Am Chem Soc

December 2024

Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

Uniform sugar-functionalized polyesters combine the benefits of sugar's structural diversity, biocompatibility, and biodegradability with precise postfunctionalization capabilities, making them a highly valuable class of materials with extensive application potential. However, the irregular placement of hydroxyl groups has limited the synthesis of these polyesters. Here, we present the first platform for uniform sugar-functionalized polyesters via regioselective ring-opening copolymerizations (ROCOPs) of allopyranoside anhydrosugar epoxide (, derived from d-glucose) with cyclic anhydrides, followed by complete selective deprotection.

View Article and Find Full Text PDF

Substrate stiffness modulates extracellular vesicles' release in a triple-negative breast cancer model.

Extracell Vesicles Circ Nucl Acids

September 2024

Nano-Innovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy.

Aim: The microenvironment effect on the tumoral-derived Extracellular Vesicle release, which is of significant interest for biomedical applications, still represents a rather unexplored field. The aim of the present work is to investigate the interrelation between extracellular matrix (ECM) stiffness and the release of small EVs from cancer cells. Here, we focus on the interrelation between the ECM and small extracellular vesicles (sEVs), specifically investigating the unexplored aspect of the influence of ECM stiffness on the release of sEVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!