Research Background: Extracts from grape pomace, including the wine, show many biological effects such as antioxidant and anti-inflammatory activities. Unfortunately, winemakers discard the bagasse, so the waste is not exploited, although it contains bioactive compounds with antioxidant and anti-inflammatory properties. The work aims to analyze the hydroethanolic extract of peels from agro-industrial waste and to evaluate its antinociceptive and anti-inflammatory properties. This study is relevant for reusing a residue and adding value to the grape economic chain.
Experimental Approach: A representative sample of pomace was obtained and the peels were used to produce the extract. The phenolic compounds were determined by mass spectrometry in multiple reaction monitoring mode and Folin-Ciocalteu colorimetric method, using gallic acid as standard. The biological analyses were carried out using mice orally treated with crude extract at doses of 30, 100 and 300 mg/kg. We evaluated mechanical hyperalgesia by the von Frey method, thermal heat hyperalgesia using a hot plate at 55 °C, paw edema using a pachymeter, and neutrophil recruitment by measurement of myeloperoxidase activity. The nephrotoxicity and hepatotoxicity were evaluated by biochemical analyses using blood samples that were collected after the administration.
Results And Conclusions: In all wet winemaking residues peel mass fraction was 75%, and in dry residues 59%. We identified nine anthocyanins (3--glucosides: peonidin, delphinidin, petunidin and malvidin; 3--coumaroyl-glucosides: cyanidin, peonidin, petunidin and malvidin, and malvidin-3,5-diglucoside), five flavonoids (apigenin-7-glucoside, luteolin-7-glucoside, quercetin-3-galactoside, isorhamnetin-3-glucoside and myricetin-3-rutinoside), and mass fraction of phenolic compounds, expressed as gallic acid equivalents, was 26.62 mg/g. assays showed that extract at mass fractions 100 and 300 mg/kg reduced carrageenan-induced mechanical and thermal hyperalgesia, 50% of the paw edema, and neutrophil recruitment. In addition, there were no indications of nephrotoxicity and hepatotoxicity. Our extract obtained from winemaking residue has analgesic and anti-inflammatory properties, related at least in part to the presence of phenolic compounds, and it is not toxic to renal and hepatic tissues.
Novelty And Scientific Contribution: This bio-product can be used as an alternative to synthetic anti-inflammatory agents with the same pharmacological potential and fewer side effects. We demonstrated that winemaking waste can be used for the production of antinociceptive and anti-inflammatory products (nutraceutical, pharmaceutical and cosmetics) without toxicity, contributing to the environmental economy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8990990 | PMC |
http://dx.doi.org/10.17113/ftb.60.01.22.7080 | DOI Listing |
Foods
January 2025
Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea.
Oncostatin M (OSM) plays a crucial role in diverse inflammatory reactions. Although the food bioactive compound naringenin (NAR) exerts various useful effects, including antitussive, anti-inflammatory, hepatoprotective, renoprotective, antiarthritic, antitumor, antioxidant, neuroprotective, antidepressant, antinociceptive, antiatherosclerotic, and antidiabetic effects, the modulatory mechanism of NAR on OSM expression in neutrophils has not been specifically reported. In the current work, we studied whether NAR modulates OSM release in neutrophil-like differentiated (d)HL-60 cells.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico. Electronic address:
Paclitaxel (PCX) based treatments, commonly used to treat breast, ovarian and lung cancers, have the highest incidence of chemotherapy-induced neuropathic pain, affecting from 38 to 94 % of patients. Unfortunately, analgesic treatments are not always effective for PCX-induced neuropathic pain (PINP). This study aimed to evaluate the antinociceptive effect of clavulanic acid (CLAV), a clinically used β-lactam molecule, in both therapeutic and preventive contexts in mice with PINP.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
KIPS, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India.
The discovery of novel counteractive pharmaceuticals, which have recently generated much interest, has played a significant role in the development of drugs derived from herbal medicines or botanical sources. Paederia foetida (P. foetida) is one such example of a role in both traditional and traditional medicine.
View Article and Find Full Text PDFPharmacol Res
January 2025
University Hospital of Jena, Institute of Physiology 1, Jena D-07740, Germany. Electronic address:
Musculoskeletal pain has a high prevalence of transition to chronic pain and/or persistence as chronic pain for years or even a lifetime. Possible mechanisms for the development of such pain states are often reflected in inflammatory or neuropathic processes involving, among others, cytokines and other molecules. Since biologics such as blockers of TNF or IL-6 can attenuate inflammation and pain in a subset of patients with rheumatoid arthritis, the question arises to what extent cytokines are involved in the generation of pain in human musculoskeletal diseases.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil.
This study evaluated the antinociceptive effect of the L. bark extract (HEXA) and its primary component, caffeic acid (CA), through in vivo assays. : The antinociceptive properties were assessed using abdominal writhing, hot plate, and Von Frey tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!