This study aimed to assess the ultrapure cannabidiol (CBD) antibacterial activity and to investigate the antibacterial activity of the combination CBD + polymyxin B (PB) against Gram-negative (GN) bacteria, including PB-resistant Gram-negative bacilli (GNB). We used the standard broth microdilution method, checkerboard assay, and time-kill assay. CBD exhibited antibacterial activity against Gram-positive bacteria, lipooligosaccharide (LOS)-expressing GN diplococcus (GND) (Neisseria gonorrhoeae, Neisseria meningitidis, Moraxella catarrhalis), and Mycobacterium tuberculosis, but not against GNB. For most of the GNB studied, our results showed that low concentrations of PB (≤ 2 µg/mL) allow CBD (≤ 4 µg/mL) to exert antibacterial activity against GNB (e.g., Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii), including PB-resistant GNB. CBD + PB also showed additive and/or synergistic effect against LOS-expressing GND. Time-kill assays results showed that the combination CBD + PB leads to a greater reduction in the number of colony forming units per milliliter compared to CBD and PB alone, at the same concentration used in combination, and the combination CBD + PB was synergistic for all four PB-resistant K. pneumoniae isolates evaluated. Our results show that CBD has translational potential and should be further explored as a repurposed antibacterial agent in clinical trials. The antibacterial efficacy of the combination CBD + PB against multidrug-resistant and extensively drug-resistant GNB, especially PB-resistant K. pneumoniae, is particularly promising.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018834 | PMC |
http://dx.doi.org/10.1038/s41598-022-10393-8 | DOI Listing |
J Asian Nat Prod Res
December 2024
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Three new terpenoid derivatives (1,6,7)-hydrobenzosydowic acid (), (1 ,6,7)-hydrobenzosydowic acid (), and (7 ,10)-11-dehydroxy-iso-10-hydroxysydowic acid (), along with the known analogues ()-2-(1-(4-nitrobenzoyl)pyrrolidine-2-carboxamido)benzoic acid () and trihydroxybutyl ester of 4-carboxydiorcinol () were isolated from the deep-sea-derived fungus DFFSCS007. Their structures were determined by spectroscopic analysis. Compound with a nitrobenzene group was isolated from nature for the first time.
View Article and Find Full Text PDF<i>Ormocarpum trichocarpum</i> (Taub.) Engl. is a shrub or small tree harvested from the wild as a source of food, traditional medicines and wood.
View Article and Find Full Text PDFPest Manag Sci
December 2024
School of Pharmacy, Lanzhou University, Lanzhou, China.
Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China.
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a significant public health problem. This study investigated the antimicrobial properties and mechanisms of berberine (BBR), a plant alkaloid, against MRSA, evaluating its potential to enhance antibiotic therapy.
Results: Berberine only demonstrated variable but significant inhibitory effects on 50 clinical MRSA strains.
J Egypt Natl Canc Inst
December 2024
Department of Community Medicine, Vinayaka Mission's Homoeopathic Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Salem, India.
Green synthesis techniques have drawn a lot of interest lately since they are beneficial to the environment and have potential uses in a variety of industries, including biomedicine. Because of their special physicochemical characteristics, copper nanoparticles (CuNPs) have become one of the most interesting options for use in biological applications among nanomaterials. An overview of green synthesis methods for CuNPs is given in this review, along with a discussion of their applications in cancer therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!