Polluted sites are ubiquitous worldwide but how plant partition their biomass between different organs in this context is unclear. Here, we identified three possible drivers of biomass partitioning in our controlled study along pollution gradients: plant size reduction (pollution effect) combined with allometric scaling between organs; early deficit in root surfaces (pollution effect) inducing a decreased water uptake; increased biomass allocation to roots to compensate for lower soil resource acquisition consistent with the optimal partitioning theory (plant response). A complementary meta-analysis showed variation in biomass partitioning across published studies, with grass and woody species having distinct modifications of their root: shoot ratio. However, the modelling of biomass partitioning drivers showed that single harvest experiments performed in previous studies prevent identifying the main drivers at stake. The proposed distinction between pollution effects and plant response will help to improve our knowledge of plant allocation strategies in the context of pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018880PMC
http://dx.doi.org/10.1038/s42003-022-03307-xDOI Listing

Publication Analysis

Top Keywords

biomass partitioning
16
plant response
8
biomass
6
pollution
6
plant
5
partitioning plants
4
plants soil
4
soil pollution
4
pollution stress
4
stress polluted
4

Similar Publications

Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).

View Article and Find Full Text PDF

Particle-bound mercury (PBM) concentrations in particulate matter (PM), PM10 and PM2.5, were investigated during dust and non-dust events at urban and rural sites in Cabo Verde, Africa. During dust events, PBM averaged 35.

View Article and Find Full Text PDF

Pulling nutrients from Mo-polluted soil by arbuscular mycorrhizal fungi extraradical mycelia is quenching thirsty with poison.

Plant Physiol Biochem

January 2025

College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China.

As an extension of plant root system, arbuscular mycorrhizal fungi (AMF) extraradical mycelium (ERM) can break the limitation of rhizosphere and play an important role in plant nutrient acquisition. However, it remains unclear whether ERM is smart enough to pick out nutrients while avoiding poison, or is unable to pick out nutrients and have to absorb poisons together. Therefore, the present study employed a compartment device to separate the mycelia from roots, aiming to explore the nutrient absorption pathways of mycelia in molybdenum (Mo) pollution soil after inoculation with AMF in maize and vetch plants.

View Article and Find Full Text PDF

The eco-stoichiometry of Ca/Cd in soil significantly affects Cd uptake and accumulation by plants in carbonate regions. In this study, the physiological responses and detoxification mechanisms of Capsicum annuum L. (capsicum) were investigated based on the eco-stoichiometric relationship of Ca/Cd in production substrates under varying pH levels (5, 6, and 7).

View Article and Find Full Text PDF

Meta-analysis reveals global variations in plant diversity effects on productivity.

Nature

January 2025

Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.

Positive effects of plant diversity on productivity have been globally demonstrated and explained by two main effects: complementarity effects and selection effects. However, plant diversity experiments have shown substantial variation in these effects, with driving factors poorly understood. On the basis of a meta-analysis of 452 experiments across the globe, we show that productivity increases on average by 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!