Background: The adolescent brain may be susceptible to the influences of illicit drug use. While compensatory network reorganization is a unique developmental characteristic that may restore several brain disorders, its association with methamphetamine (MA) use-induced damage during adolescence is unclear.

Methods: Using independent component (IC) analysis on structural magnetic resonance imaging data, spatially ICs described as morphometric networks were extracted to examine the effects of MA use on gray matter (GM) volumes and network module connectivity in adolescents (51 MA users 60 controls) and adults (54 MA users 60 controls).

Results: MA use was related to significant GM volume reductions in the default mode, cognitive control, salience, limbic, sensory and visual network modules in adolescents. GM volumes were also reduced in the limbic and visual network modules of the adult MA group as compared to the adult control group. Differential patterns of structural connectivity between the basal ganglia (BG) and network modules were found between the adolescent and adult MA groups. Specifically, adult MA users exhibited significantly reduced connectivity of the BG with the default network modules compared to control adults, while adolescent MA users, despite the greater extent of network GM volume reductions, did not show alterations in network connectivity relative to control adolescents.

Conclusions: Our findings suggest the potential of compensatory network reorganization in adolescent brains in response to MA use. The developmental characteristic to compensate for MA-induced brain damage can be considered as an age-specific therapeutic target for adolescent MA users.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317813PMC
http://dx.doi.org/10.1017/S0033291722000423DOI Listing

Publication Analysis

Top Keywords

network modules
16
network
10
compensatory network
8
network reorganization
8
developmental characteristic
8
volume reductions
8
visual network
8
adolescent users
8
adolescent
5
users
5

Similar Publications

Gastrointestinal (GI) disease examination presents significant challenges to doctors due to the intricate structure of the human digestive system. Colonoscopy and wireless capsule endoscopy are the most commonly used tools for GI examination. However, the large amount of data generated by these technologies requires the expertise and intervention of doctors for disease identification, making manual analysis a very time-consuming task.

View Article and Find Full Text PDF

Obesity (OB) and atherosclerosis (AS) represent two highly prevalent and detrimental chronic diseases that are intricately linked. However, the shared genetic signatures and molecular pathways underlying these two conditions remain elusive. This study aimed to identify the shared diagnostic genes and the associated molecular mechanism between OB and AS.

View Article and Find Full Text PDF

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Molecular Docking is a critical task in structure-based virtual screening. Recent advancements have showcased the efficacy of diffusion-based generative models for blind docking tasks. However, these models do not inherently estimate protein-ligand binding strength thus cannot be directly applied to virtual screening tasks.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD) exhibits molecular heterogeneity, with mitochondrial damage affecting progression. The relationship between mitochondrial damage and immune infiltration, and Weighted Gene Co-expression Network Analysis (WGCNA)-derived biomarkers for LUAD classification and prognosis, remains unexplored.

Aims: The objective of our research is to identify gene modules closely related to the clinical stages of LUAD using the WGCNA method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!