A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning in Chemoinformatics and Medicinal Chemistry. | LitMetric

Machine Learning in Chemoinformatics and Medicinal Chemistry.

Annu Rev Biomed Data Sci

Department of Life Science Informatics, B-IT (Bonn-Aachen International Center for Information Technology), Chemical Biology and Medicinal Chemistry Program Unit, LIMES (Life and Medical Sciences Institute), Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany; email:

Published: August 2022

In chemoinformatics and medicinal chemistry, machine learning has evolved into an important approach. In recent years, increasing computational resources and new deep learning algorithms have put machine learning onto a new level, addressing previously unmet challenges in pharmaceutical research. In silico approaches for compound activity predictions, de novo design, and reaction modeling have been further advanced by new algorithmic developments and the emergence of big data in the field. Herein, novel applications of machine learning and deep learning in chemoinformatics and medicinal chemistry are reviewed. Opportunities and challenges for new methods and applications are discussed, placing emphasis on proper baseline comparisons, robust validation methodologies, and new applicability domains.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-biodatasci-122120-124216DOI Listing

Publication Analysis

Top Keywords

machine learning
16
chemoinformatics medicinal
12
medicinal chemistry
12
learning chemoinformatics
8
deep learning
8
learning
5
machine
4
chemistry chemoinformatics
4
chemistry machine
4
learning evolved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!