Intervertebral disc degeneration (IVDD) is a chronic age-related degenerative disease accompanied by complex pathophysiological mechanisms. Increasing evidence indicates that NLRP3 inflammasome mediated pyroptosis of nucleus pulposus (NP) cells displays an important role in the pathological progression of IVDD. Milk fat globule-EGF factor-8 (MFG-E8) is an endogenously secreted glycoprotein with beneficial effects of anti-inflammatory, antioxidant, and modulation of NLRP3 inflammasome. However, the effect of MFG-E8 on IVDD remains unclear. In this study, our purpose is to clarify the expression changes of MFG-E8 in the IVDD process and explore the role and mechanism of MFG-E8. We found that MFG-E8's expression was reduced in degraded nucleus pulposus tissues of humans and rats as well as hydrogen peroxide (HO)-treated NP cells. Exogenous supplementation of MFG-E8 could rescue HO-induced oxidative stress, mitochondrial dysfunction, and NLRP3 inflammasome activation and protect NP cells from pyroptosis and extracellular matrix (ECM) degradation. Mechanistically, Nrf2/TXNIP/NLRP3 axis plays a crucial role in MFG-E8-mediated suppression of the above-pathological events. In vivo, we established a rat intervertebral disc acupuncture model and found that MFG-E8 administration effectively alleviated IVDD development by imageological and histomorphological evaluation. Overall, our findings revealed the internal mechanisms underlying MFG-E8 regulation in NP cells and its intrinsic value for IVDD therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018842PMC
http://dx.doi.org/10.1038/s41420-022-01002-8DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
12
nucleus pulposus
12
nlrp3 inflammasome
12
mfg-e8
8
disc degeneration
8
pyroptosis extracellular
8
extracellular matrix
8
pulposus cells
8
nrf2/txnip/nlrp3 axis
8
mfg-e8 ivdd
8

Similar Publications

The superior hypogastric plexus (SHP) contains afferent nociceptive fibers from the pelvic structures, thus the SHP block is employed in the chronic pelvic pain (CPP) treatment in patients who do not respond to conservative treatments. A 60-year-old female patient, who did not respond to conservative treatment, underwent SHP neurolytic block after a successful diagnostic block. An excessive oblique angle approach was applied due to physical restrictions, the needle passed through the intervertebral disc resulting in the contralateral side SHP block, and the procedure was also repeated to the other side SHP.

View Article and Find Full Text PDF

Background: The molecular of intervertebral disc degeneration (IVDD) is still unclear. When it comes to treating decoction, traditional Chinese medicine is effective. In particular, the Duhuo (Radix Angelicae Biseratae) may be particularly helpful.

View Article and Find Full Text PDF

Introduction: To develop an intelligent system based on artificial intelligence (AI) deep learning algorithms using deep learning tools, aiming to assist in the diagnosis of lumbar degenerative diseases by identifying lumbar spine magnetic resonance images (MRI) and improve the clinical efficiency of physicians.

Methods: The PP-YOLOv2 algorithm, a deep learning technique, was used to design a deep learning program capable of automatically identifying the spinal diseases (lumbar disc herniation or lumbar spondylolisthesis) based on the lumbar spine MR images. A retrospective analysis was conducted on lumbar spine MR images of patients who visited our hospital from January 2017 to January 2022.

View Article and Find Full Text PDF

Expression of MMP1, MMP3, and TIMP1 in intervertebral discs under simulated overload and microgravity conditions.

J Orthop Surg Res

January 2025

Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University of China, Gongti South Rd, No. 8, Beijing, 100020, China.

Objective: This study aims to investigate changes in matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) levels in the intervertebral discs of New Zealand white rabbits under simulated overload and microgravity conditions, focusing on the expression of MMP1, MMP3, and TIMP1. The findings aim to provide a theoretical foundation for preventing and delaying lumbar disc degeneration in these environments.

Methods: Overload was simulated using an animal centrifuge, and microgravity was mimicked through tail suspension.

View Article and Find Full Text PDF

Rationale: Alkaptonuria (AKU) is a rare, inherited metabolic disease caused by deficient activity of homogentisic acid oxidase, leading to the accumulation of homogentisic acid and its oxidized product, benzoquinone acetic acid. These compounds cause black discoloration of cartilage, degeneration, inflammation, and calcification of intervertebral disks and large joints, resulting in pain and impaired quality of life. Despite its debilitating effects, there are no curative treatments for AKU, and management remains supportive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!