Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
FOXP3+ regulatory T cells (Tregs) are central to maintaining peripheral tolerance and immune homeostasis. They have the potential to be developed as a cellular therapy to treat various clinical ailments such as autoimmune disorders, inflammatory diseases and to improve transplantation outcomes. However, a major question remains whether Tregs can persist and exert their function effectively in a disease state, where a broad spectrum of inflammatory mediators could inactivate Tregs. In this study, we investigated the potential of mesenchymal stem cell (MSC)-derived exosomes to promote and sustain Tregs function. MSC-conditioned media (MSC-CM) cultured Tregs were more suppressive in both polyclonal and allogeneic responses and were resistant to inflammatory stimulation in vitro compared with the controls. A similar enhancement of Treg function was also observed by culturing Tregs with MSC-derived exosomes alone. The enhanced suppressive activity and stability of Treg cultured in MSC-CM was reduced when exosomes were depleted from MSC-CM. We identified that MSC-derived exosomes could upregulate the expression of LC3(II/I), phosphorylate Jak3 and Stat5 to promote Treg survival, and regulate FOXP3 expression in Tregs. Overall, our study demonstrates that MSC-derived exosomes are capable of enhancing Hucb-Tregs function and stability by activating autophagy and Stat5 signalling pathways. Our findings provide a strong rationale for utilizing MSC-derived exosomes as an effective strategy to enhance Treg function, and improve the overall Tregs-based cell therapy landscape.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226152 | PMC |
http://dx.doi.org/10.1093/cei/uxac035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!