Multi-locus methylation defects (MLMDs) in imprinted loci have been reported in Beckwith-Wiedemann Syndrome (BWS). Large offspring syndrome (LOS), a phenotypic subgroup of abnormal offspring syndrome (AOS), is considered a molecular and phenotypic model for BWS. Both LOS and BWS have presented epigenetic defects in some common imprinted loci. In this study, methylation-specific restriction digestion assay - quantitative PCR was used to analyze the DNA methylation pattern in differentially methylated regions (DMRs) of the H19 (H19-DMR), KCNQ1OT1 (KvDMR1) and PEG1/MEST (PEG1-DMR) genes in bovine clone tissues from calves that did not survive after birth. Individual and tissue-specific changes in DNA methylation levels in the bovine KvDMR1, H19-DMR, and PEG1-DMR were observed. In contrast to what has been reported in the literature on BWS and AOS/LOS, the KvDMR1 showed gain (GOM) and loss (LOM) of DNA methylation. LOM and GOM events were found in the DMRs studied in animals produced by the same nucleus donor cell line. This is the first report of epimutations in the PEG1-DMR and GOM at the KvDMR1 found in bovine clones. The findings showed that epigenetic modification in imprinted loci in cloned cattle occurred in a multi-locus pattern similar to that seen in human imprinting disorders. Other multi-locus analyzes must be done to elucidate the MLMD pattern in AOS in bovine clones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2022.04.006DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
imprinted loci
12
offspring syndrome
8
bovine clones
8
methylation
5
multi-locus
4
multi-locus dna
4
methylation analysis
4
imprinted
4
analysis imprinted
4

Similar Publications

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Aim: We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.

Methods: We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK ( = 796; White) and the maternal and infant cohort study (MICS) in Taiwan ( = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.

View Article and Find Full Text PDF

Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.

Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!