Cyclic di-guanosine monophosphate (c-di-GMP) is a second messenger found ubiquitously in bacteria. This signaling molecule regulates a variety of physiological activities such as phototaxis and flocculation in cyanobacteria and is critical for their environmental adaptation. Although genes encoding the enzymes for synthesis and/or degradation of c-di-GMP are found in the genomes of both multicellular and unicellular cyanobacteria, little is known about the biological functions of these enzymes in cyanobacterial cells. Here we have established a robust and highly sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS)-based method for c-di-GMP quantification using a cost-effective solvent, methanol. Quantification methods were validated by measuring c-di-GMP in the cyanobacterium Synechococcus elongatus PCC 7942 through spiking and recovery assays after which the method was applied to examine short-term changes in cellular levels of c-di-GMP in response to a transition from light to dark or from dark to light in S. elongatus. Results showed that a transient increase in c-di-GMP upon transitioning from light to dark was occurring which resembled responses involving cyclic adenosine monophosphate and other second messengers in cyanobacteria. These findings demonstrated that our method enabled relatively specific and sensitive quantification of c-di-GMP in cyanobacteria at lower cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2022.106468 | DOI Listing |
Front Chem
January 2025
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.
Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH.
View Article and Find Full Text PDFJ Oral Microbiol
December 2024
Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.
Background: Bacterial cyclic dinucleotides (CDNs), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) upregulate interferon signaling proteins of human gingival fibroblasts (HGFs). However, the simultaneous effect of bacterial CDNs and lipopolysaccharides (LPS) on the HGF proteome is unknown.
Aim: The aim was to apply an unbiased proteomics approach to evaluate how simultaneous exposure to CDNs and (Pg) LPS affect the global proteome of HGFs.
Pak J Pharm Sci
May 2024
Department of Computer Science, Sri Ramakrishna College of Arts & Science (Autonomous), Coimbatore, Tamilnadu, India.
Sesbania grandiflora also known as Agasthya has potent antibiofilm activity and its bioactive compounds obtained from the leaves are medicarpin, isoniazid and 4-methyl oxazole. Extra cellular polymeric substances (EPS) created by the bacterium involve the formation of biofilm and this causes the infections such as nosocomial infections, and urinary tract infections. Pseudomonas aeruginosa has been linked with high levels of intracellular Cyclic-di-Guanosine Monophosphate (c-di-GMP; PA4781) in biofilm formation.
View Article and Find Full Text PDFGene
January 2025
Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China. Electronic address:
Vibrio parahaemolyticus (V. parahaemolyticus) stands as the predominant etiological agent responsible for gastroenteritis associated with the consumption of seafood. Cyclic di-guanosine monophosphate (c-di-GMP), a secondary messenger in bacteria, controls multiple bacterial behaviors including pathogenesis, the development of biofilms, and motility.
View Article and Find Full Text PDFCell Rep
May 2024
Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA. Electronic address:
Cyclic di-guanosine monophosphate (c-di-GMP) is a bacterial second messenger that governs the lifestyle switch between planktonic and biofilm states. While substantial investigation has focused on the proteins that produce and degrade c-di-GMP, less attention has been paid to the potential for metabolic control of c-di-GMP signaling. Here, we show that micromolar levels of specific environmental purines unexpectedly decrease c-di-GMP and biofilm formation in Pseudomonas aeruginosa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!