Perfluoroalkyl acids (PFAAs) are emerging contaminants that pose significant environmental and health concerns. Water-sediment-macrophyte residue systems were established to clarify the removal efficiency of PFAAs, explore possible removal pathways, and profile the dynamic succession of biofilm microbial communities in the decomposition process. These systems were fortified with 12 PFAAs at three concentration levels. Iris pseudacorus and Alisma orientale were selected as the decomposing emergent macrophytes. The removal rates in the treatments with residues of I. pseudacorus (IP) and A. orientale (AO) were 34.4% to 88.9% and 36.5% to 89.9%, respectively, which were higher than those in the control groups (CG) (30.3% to 86.9%), suggesting that decomposition could alter the removal of PFAAs. Sediment made the greatest contributions (preloaded 14.5% to 77.8% of PFAAs in IP, 14.3% to 78.2% in AO, and 27.4% to 71.9% in CG). PFAAs could also be removed by macrophyte residue sorption (0.0190% to 13.0% in IP and 0.016% to 15.6% in AO) and bioaccumulation of residual biofilm (the contributions of biofilm microbes and their extracellular polymeric substances were 0.0110% to 3.93% and 0.918% to 34.4%, respectively, in IP and 0.0141% to 4.65% and 1.49% to 34.1%, respectively, in AO). Significant correlations were observed between sediment/residue adsorption and bioaccumulation of biofilm microbes, and were significantly correlated with perfluoroalkyl chain length (p < 0.05). The dynamic succession of residual biofilm microbial communities was investigated. The largest difference was found at the preliminary stage. The most similar communities were found in AO on day 70 (with specific genera Macellibacteroides and WCHB1-32) and in IP on day 35 (with specific genera Aeromonas and Flavobacterium). This study is useful to understand the removal of PFAAs during the decomposition process, providing further assistance in removing PFAAs during the life cycle of macrophytes in wetlands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155295 | DOI Listing |
J Clin Transl Sci
December 2024
Vanderbilt Institute for Clinical and Translational Research, University Medical Center, Nashville, TN, USA.
There is a growing trend for studies run by academic and nonprofit organizations to have regulatory submission requirements. As a result, there is greater reliance on REDCap, an electronic data capture (EDC) widely used by researchers in these organizations. This paper discusses the development and implementation of the Rapid Validation Process (RVP) developed by the REDCap Consortium, aimed at enhancing regulatory compliance and operational efficiency in response to the dynamic demands of modern clinical research.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.
Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
The microalgal-bacterial consortium (MBC) system is recognized as an advanced approach for nitrogen and phosphorus removal in wastewater treatment. However, the influence of microalgae on bacterial community dynamics and niche differentiation across varying seasonal conditions remains unexplored. In this study, we established a pilot-scale continuous-flow MBC system to disentangle, for the first time, the impact of microalgae on seasonal bacterial community succession by conducting monthly time-series sampling over a full seasonal cycle.
View Article and Find Full Text PDFInsect Sci
January 2025
Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil.
Succession is one of the most extensively studied ecological phenomena, yet debates persist about the importance of dispersal and external factors in driving this process. We aimed to quantify the influence of these factors by investigating how wing-related traits evolve across succession of blowfly (Diptera: Calliphoridae) communities in South Brazil. Rat carrion was placed in both forest and grassland habitats, and the associated blowfly communities were documented throughout the decomposition process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!