Bulleyaconitine A is a sensitive substrate and competitive inhibitor of CYP3A4: One of the possible explanations for clinical adverse reactions.

Toxicol Appl Pharmacol

Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. Electronic address:

Published: June 2022

Bulleyaconitine A (BLA), a toxic Aconitum alkaloid, is a potent analgesic that is clinically applied to treat rheumatoid arthritis, osteoarthritis and lumbosacral pain. BLA-related adverse reactions occur frequently, but whether the underlying mechanism is related to its metabolic interplay with drug-metabolizing enzymes remains unclear. This study aimed to elucidate the metabolic characteristics of BLA and its affinity action and mechanism to drug-metabolizing enzymes to reveal whether BLA-related adverse reactions are modulated by enzymes. After incubation with human liver microsomes and recombinant human cytochrome P450 enzymes, we found that BLA was predominantly metabolized by CYP3A, in which CYP3A4 had an almost absolute advantage. In vitro, the CYP3A4 inhibitor ketoconazole noticeably suppressed the metabolism of BLA. In vivo, the AUC values, cardiotoxicity and neurotoxicity of BLA in Cyp3a-inhibited mice were all obviously enhanced (P < 0.05) compared to those in normal mice. In the enzyme kinetics study, BLA was found to be a sensitive substrate of CYP3A4, and its characteristics were consistent with substrate inhibition (K = 39.36 ± 10.47 μmol/L, K = 83.42 ± 19.65 μmol/L). BLA was further identified to be a competitive inhibitor of CYP3A4 with K = 53.64 μmol/L, since the intrinsic clearance (CL) of midazolam, a selective CYP3A4 substrate, decreased significantly (P < 0.05) when incubated with BLA together in mouse liver microsomes. Overall, BLA is a sensitive substrate and competitive inhibitor of CYP3A4, and clinical adverse reactions of BLA may mechanistically related to the CYP3A4-mediated drug-drug interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2022.116024DOI Listing

Publication Analysis

Top Keywords

adverse reactions
12
bla-related adverse
8
drug-metabolizing enzymes
8
bla
5
bulleyaconitine sensitive
4
sensitive substrate
4
substrate competitive
4
competitive inhibitor
4
inhibitor cyp3a4
4
cyp3a4 explanations
4

Similar Publications

Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management.

View Article and Find Full Text PDF

Idiopathic Pulmonary Fibrosis (IPF) is a chronic respiratory disorder for which pirfenidone is the recommended first-line anti-fibrotic treatment. While pirfenidone has demonstrated efficacy in slowing the progression of IPF, its use is associated with several challenges and unresolved issues that impact patient outcomes. Pirfenidone administration can result in gastrointestinal side effects, photosensitivity reactions, and significant drug interactions, particularly in patients with hepatic impairment.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have been widely applicated for the treatment of patients with advanced esophageal cancer. Skin-related adverse reactions are frequent with ICIs, with toxic epidermal necrolysis (TEN) being a severe and potentially life-threatening cutaneous reaction.

Case Presentation: We present a case of a 70-year-old male with locally advanced esophageal cancer who developed severe toxic epidermal necrolysis (TEN) after 18 days of tislelizumab combined with chemotherapy.

View Article and Find Full Text PDF

Background: Therapeutic advancements for the polyglutamine diseases, particularly spinocerebellar degeneration, are eagerly awaited. We evaluated the safety, tolerability, and therapeutic effects of L-arginine, which inhibits the conformational change and aggregation of polyglutamine proteins, in patients with spinocerebellar ataxia type 6 (SCA6).

Methods: A multicenter, randomized, double-blind, placebo-controlled phase 2 trial (clinical trial ID: AJA030-002, registration number: jRCT2031200135) was performed on 40 genetically confirmed SCA6 patients enrolled between September 1, 2020, and September 30, 2021.

View Article and Find Full Text PDF

Background: Deutetrabenazine is a widely used drug for the treatment of tardive dyskinesia (TD), and post-marketing testing is important. There is a lack of real-world, large-sample safety studies of deutetrabenazine. In this study, a pharmacovigilance analysis of deutetrabenazine was performed based on the FDA Adverse Event Reporting System (FAERS) database to evaluate its relevant safety signals for clinical reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!