Dynamical systems on graphs allow to describe multiple phenomena from different areas of Science. In particular, many complex systems in Ecology are studied by this approach. In this paper we analize the mathematical framework for the study of the structural stability of each stationary point, feasible or not, introducing a generalization for this concept, defined as Global Structural Stability. This approach would fit with the proper mathematical concept of structural stability, in which we find a full description of the complex dynamics on the phase space due to nonlinear dynamics. This fact can be analyzed as an informational field grounded in a global attractor whose structure can be completely characterized. These attractors are stable under perturbation and suppose the minimal structurally stable sets. We also study in detail, mathematically and computationally, the zones characterizing different levels of biodiversity in bipartite graphs describing mutualistic antagonistic systems of population dynamics. In particular, we investigate the dependence of the region of maximal biodiversity of a system on its connectivity matrix. On the other hand, as the network topology does not completely determine the robustness of the dynamics of a complex network, we study the correlation between structural stability and several graph measures. A systematic study on synthetic and biological graphs is presented, including 10 mutualistic networks of plants and seed-dispersal and 1000 random synthetic networks. We compare the role of centrality measures and modularity, concluding the importance of just cooperation strength among nodes when describing areas of maximal biodiversity. Indeed, we show that cooperation parameters are the central role for biodiversity while other measures act as secondary supporting functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017889 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267404 | PLOS |
ACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.
View Article and Find Full Text PDFEnzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.
View Article and Find Full Text PDFJ Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.
Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!