Thoughts on how to think (and talk) about RNA structure.

Proc Natl Acad Sci U S A

Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045.

Published: April 2022

Recent events have pushed RNA research into the spotlight. Continued discoveries of RNA with unexpected diverse functions in healthy and diseased cells, such as the role of RNA as both the source and countermeasure to a severe acute respiratory syndrome coronavirus 2 infection, are igniting a new passion for understanding this functionally and structurally versatile molecule. Although RNA structure is key to function, many foundational characteristics of RNA structure are misunderstood, and the default state of RNA is often thought of and depicted as a single floppy strand. The purpose of this perspective is to help adjust mental models, equipping the community to better use the fundamental aspects of RNA structural information in new mechanistic models, enhance experimental design to test these models, and refine data interpretation. We discuss six core observations focused on the inherent nature of RNA structure and how to incorporate these characteristics to better understand RNA structure. We also offer some ideas for future efforts to make validated RNA structural information available and readily used by all researchers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169933PMC
http://dx.doi.org/10.1073/pnas.2112677119DOI Listing

Publication Analysis

Top Keywords

rna structure
20
rna
11
rna structural
8
structure
5
thoughts talk
4
talk rna
4
structure events
4
events pushed
4
pushed rna
4
rna spotlight
4

Similar Publications

Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.

Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.

View Article and Find Full Text PDF

Background: Gyrodactylus von Nordmann, 1832, a genus of viviparous parasites within the family Gyrodactylidae, contains one of the largest nominal species in the world. Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 widely distributed in Europe and China, although its mitochondrial genome remains unclear. This study aims to sequence the mitogenome of G.

View Article and Find Full Text PDF

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain.

View Article and Find Full Text PDF

Structural basis of 5' splice site recognition by the minor spliceosome.

Mol Cell

January 2025

European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France. Electronic address:

The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!