A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Food web rewiring drives long-term compositional differences and late-disturbance interactions at the community level. | LitMetric

Ecological communities are constantly exposed to multiple natural and anthropogenic disturbances. Multivariate composition (if recovered) has been found to need significantly more time to be regained after pulsed disturbance compared to univariate diversity metrics and functional endpoints. However, the mechanisms driving the different recovery times of communities to single and multiple disturbances remain unexplored. Here, we apply quantitative ecological network analyses to try to elucidate the mechanisms driving long-term community-composition dissimilarity and late-stage disturbance interactions at the community level. For this, we evaluate the effects of two pesticides, nutrient enrichment, and their interactions in outdoor mesocosms containing a complex freshwater community. We found changes in interactions strength to be strongly related to compositional changes and identified postdisturbance interaction-strength rewiring to be responsible for most of the observed compositional changes. Additionally, we found pesticide interactions to be significant in the long term only when both interaction strength and food-web architecture are reshaped by the disturbances. We suggest that quantitative network analysis has the potential to unveil ecological processes that prevent long-term community recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9173581PMC
http://dx.doi.org/10.1073/pnas.2117364119DOI Listing

Publication Analysis

Top Keywords

interactions community
8
community level
8
mechanisms driving
8
compositional changes
8
interactions
5
food web
4
web rewiring
4
rewiring drives
4
drives long-term
4
long-term compositional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!