Widespread of Potential Pathogen-Derived Extracellular Vesicles Carrying Antibiotic Resistance Genes in Indoor Dust.

Environ Sci Technol

Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Published: May 2022

Extracellular vesicles (EVs) are newly recognized as important vectors for carrying and spreading antibiotic resistance genes (ARGs). However, the ARGs harbored by EVs in ambient environments and the transfer potential are still unclear. In this study, the prevalence of ARGs and mobile genetic elements (MGEs) in EVs and their microbial origins were studied in indoor dust from restaurants, kindergarten, dormitories, and vehicles. The amount of EVs ranged from 3.40 × 10 to 1.09 × 10 particles/g dust. The length of EV-associated DNA fragments was between 21 bp and 9.7 kb. Metagenomic sequencing showed that a total of 241 antibiotic ARG subtypes encoding resistance to 16 common classes were detected in the EVs from all four fields. Multidrug, quinolone, and macrolide resistance genes were the dominant types. 15 ARG subtypes were exclusively carried and even enriched in EVs compared to the indoor microbiome. Moreover, several ARGs showed co-occurrence with MGEs. The EVs showed distinct taxonomic composition with their original dust microbiota. 30.23% of EV-associated DNA was predicted to originate from potential pathogens. Our results indicated the widespread of EVs carrying ARGs and virulence genes in daily life indoor dust, provided new insights into the status of extracellular DNA, and raised risk concerns on their gene transfer potential.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c08654DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
indoor dust
12
extracellular vesicles
8
antibiotic resistance
8
evs
8
transfer potential
8
mges evs
8
ev-associated dna
8
arg subtypes
8
dust
5

Similar Publications

Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.

View Article and Find Full Text PDF

Mobile genetic elements are key to the global emergence of antibiotic resistance. We successfully reconstructed the complete bacterial genome and plasmid assemblies of isolates sharing the same carbapenemase gene to understand evolution over time in six confined hospital drains over five years. From 82 isolates we identified 14 unique strains from 10 species with 113 carrying plasmids across 16 distinct replicon types.

View Article and Find Full Text PDF

Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.

View Article and Find Full Text PDF

Breast cancer continues to be a significant global health challenge due to its heterogeneity and propensity for therapeutic resistance. The current tumor, node, and metastasis (TNM) staging and molecular classification systems are limited in capturing the full biological complexity of breast cancer. Myeloid differentiation primary response protein 88 (MyD88), a key adaptor protein in inflammatory signaling pathways, has been implicated in various oncogenic processes.

View Article and Find Full Text PDF

TYMS Enhances Colorectal Cell Antioxidant Capacity Via the KEAP1-NRF2 Pathway to Resist Ferroptosis.

J Cancer

January 2025

The Colorectal and Anal Surgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.

Thymidylate synthase (TYMS) is a key regulatory enzyme in DNA synthesis. We identified the biological effect and molecular mechanisms of TYMS in colorectal cancer (CRC). We employed western blot and immunohistochemistry for the assessment of TYMS expression in CRC samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!