AI Article Synopsis

  • BT-R is a G-protein-coupled receptor in moths that helps regulate cell adhesion and signaling for cellular balance.
  • Cry1A toxins bind tightly to BT-R, activating a signaling pathway that leads to insect death, with all three toxins competing for the same binding site.
  • The critical binding domain for these toxins was identified in a specific region of BT-R, and experiments confirmed that this region is essential for their insecticidal activity.

Article Abstract

The G-protein-coupled receptor BT-R in the moth represents a class of single-membrane-spanning α-helical proteins within the cadherin family that regulate intercellular adhesion and contribute to important signaling activities that control cellular homeostasis. The Cry1A toxins, Cry1Aa, Cry1Ab, and Cry1Ac, produced by bind BT-R very tightly ( = 1.1 nM) and trigger a Mg-dependent signaling pathway that involves the stimulation of G-protein α-subunit, which subsequently launches a coordinated signaling cascade, resulting in insect death. The three Cry1A toxins compete for the same binding site on BT-R, and the pattern of inhibition of insecticidal activity against is strikingly similar for all three toxins. The binding domain is localized in the 12th cadherin repeat (EC12: Asp1349 to Arg1460, DR) in BT-R and to various truncation fragments derived therefrom. Fine mapping of EC12 revealed that the smallest fragment capable of binding is a highly conserved 94-amino acid polypeptide bounded by Ile1363 and Ser1456 (IS), designated as the toxin-binding site (TBS). Logistical regression analysis revealed that binding of an EC12 truncation fragment containing the TBS is antagonistic to each of the Cry1A toxins and completely inhibits the insecticidal activity of all three. Elucidation of the EC12 motif of the TBS by X-ray crystallography at a 1.9 Å resolution combined with results of competitive binding analyses, live cell experiments, and whole insect bioassays substantiate the exclusive involvement of BT-R in initiating insect cell death and demonstrate that the natural receptor BT-R contains a single TBS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.2c00089DOI Listing

Publication Analysis

Top Keywords

cry1a toxins
16
receptor bt-r
12
toxin-binding site
8
g-protein-coupled receptor
8
insecticidal activity
8
bt-r
7
toxins
5
binding
5
functional structural
4
structural analysis
4

Similar Publications

Cry2Ab2 is a Bacillus thuringiensis (Bt) protein that has been pyramided with Cry1A.105 in transgenic maize and Cry1Ac in cotton to control some major lepidopteran pests including the corn earworm/bollworm, Helicoverpa zea (Boddie). However, the widespread occurrence of resistance of this pest to the pyramided Cry1A/Cry2A crops in the southern region of the United State has become a threat to the sustainability of the technology.

View Article and Find Full Text PDF

Background: Helicoverpa armigera is a highly polyphagous species that causes huge losses to agricultural and horticultural crops worldwide. In the cotton industry, H. armigera, including the Australian subspecies Helicoverpa armigera conferta, is largely managed using genetically modified crops that express insecticidal toxins, such as Cry1Ac.

View Article and Find Full Text PDF
Article Synopsis
  • - Rachiplusia nu (R. nu) has evolved from a secondary pest to a significant threat to soybean crops in Brazil and Argentina, particularly with those engineered to produce the Cry1Ac toxin, leading researchers to investigate resistance mechanisms.
  • - An experiment revealed that a resistant strain of R. nu can thrive on Cry1Ac soybean leaves, showing a resistance ratio greater than 736 times, while susceptible strains quickly died off; this resistance is autosomal recessive and monogenic with minimal fitness costs.
  • - The study found cross-resistance to another toxin (Cry1A.105) but not to Cry2Ab2, suggesting the combination of Cry1Ac, Cry1A.105, and Cry2Ab
View Article and Find Full Text PDF

Rachiplusia nu Guenée is a polyphagous species able to develop on several cultivated and non-cultivated host plants. However, basic life history information about this pest on hosts is scarce. In this study, R.

View Article and Find Full Text PDF

Background: Lepidopteran pest control in agriculture has become heavily dependent on cultivars that express Bacillus thuringiensis (Bt) toxins as 'plant-incorporated protectants'. However, populations of Spodoptera frugiperda (Smith) in Brazil appear resistant to the Bt traits currently available in commercial soybean cultivars.

Results: This study evaluated S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!