The G-protein-coupled receptor BT-R in the moth represents a class of single-membrane-spanning α-helical proteins within the cadherin family that regulate intercellular adhesion and contribute to important signaling activities that control cellular homeostasis. The Cry1A toxins, Cry1Aa, Cry1Ab, and Cry1Ac, produced by bind BT-R very tightly ( = 1.1 nM) and trigger a Mg-dependent signaling pathway that involves the stimulation of G-protein α-subunit, which subsequently launches a coordinated signaling cascade, resulting in insect death. The three Cry1A toxins compete for the same binding site on BT-R, and the pattern of inhibition of insecticidal activity against is strikingly similar for all three toxins. The binding domain is localized in the 12th cadherin repeat (EC12: Asp1349 to Arg1460, DR) in BT-R and to various truncation fragments derived therefrom. Fine mapping of EC12 revealed that the smallest fragment capable of binding is a highly conserved 94-amino acid polypeptide bounded by Ile1363 and Ser1456 (IS), designated as the toxin-binding site (TBS). Logistical regression analysis revealed that binding of an EC12 truncation fragment containing the TBS is antagonistic to each of the Cry1A toxins and completely inhibits the insecticidal activity of all three. Elucidation of the EC12 motif of the TBS by X-ray crystallography at a 1.9 Å resolution combined with results of competitive binding analyses, live cell experiments, and whole insect bioassays substantiate the exclusive involvement of BT-R in initiating insect cell death and demonstrate that the natural receptor BT-R contains a single TBS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.2c00089 | DOI Listing |
J Invertebr Pathol
February 2025
Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
Cry2Ab2 is a Bacillus thuringiensis (Bt) protein that has been pyramided with Cry1A.105 in transgenic maize and Cry1Ac in cotton to control some major lepidopteran pests including the corn earworm/bollworm, Helicoverpa zea (Boddie). However, the widespread occurrence of resistance of this pest to the pyramided Cry1A/Cry2A crops in the southern region of the United State has become a threat to the sustainability of the technology.
View Article and Find Full Text PDFPest Manag Sci
November 2024
Faculty of Science and Technology, University of Canberra, Canberra, Australia.
Background: Helicoverpa armigera is a highly polyphagous species that causes huge losses to agricultural and horticultural crops worldwide. In the cotton industry, H. armigera, including the Australian subspecies Helicoverpa armigera conferta, is largely managed using genetically modified crops that express insecticidal toxins, such as Cry1Ac.
View Article and Find Full Text PDFPest Manag Sci
October 2024
Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil.
J Econ Entomol
October 2024
Department of Crop Protection, Federal University of Pelotas (UFPel), Capão do Leão, Brazil.
Rachiplusia nu Guenée is a polyphagous species able to develop on several cultivated and non-cultivated host plants. However, basic life history information about this pest on hosts is scarce. In this study, R.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Laboratório de Entomologia, Instituto Federal Goiano, Rio Verde, Brazil.
Background: Lepidopteran pest control in agriculture has become heavily dependent on cultivars that express Bacillus thuringiensis (Bt) toxins as 'plant-incorporated protectants'. However, populations of Spodoptera frugiperda (Smith) in Brazil appear resistant to the Bt traits currently available in commercial soybean cultivars.
Results: This study evaluated S.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!