RNA structure and function are intimately tied to RNA binding protein recognition and regulation. Posttranslational modifications are chemical modifications which can control protein biology. The role of PTMs in the regulation RBPs is not well understood, in part due to a lacking analysis of PTM deposition on RBPs. Herein, we present an analysis of posttranslational modifications (PTMs) on RNA binding proteins (RBPs; a PTM RBP Atlas). We curate published datasets and primary literature to understand the landscape of PTMs and use protein-protein interaction data to understand and potentially provide a framework for understanding which enzymes are controlling PTM deposition and removal on the RBP landscape. Intersection of our data with The Cancer Genome Atlas also provides researchers understanding of mutations that would alter PTM deposition. Additional characterization of the RNA-protein interface provided from in-cell UV crosslinking experiments provides a framework for hypotheses about which PTMs could be regulating RNA binding and thus RBP function. Finally, we provide an online database for our data that is easy to use for the community. It is our hope our efforts will provide researchers will an invaluable tool to test the function of PTMs controlling RBP function and thus RNA biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071496 | PMC |
http://dx.doi.org/10.1093/nar/gkac243 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFNat Commun
January 2025
European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.
View Article and Find Full Text PDFCell Death Dis
January 2025
Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria. Electronic address:
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:
As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!