The expression of various forms of hepatitis B virus (HBV) surface proteins regulates the release of mature virion, but whether they affect the release of other incomplete viral particles, such as naked capsid, is not clear. Here, by stable overexpression of large or middle/small hepatitis B surface proteins (LHBs, M/SHBs) in HepAD38 cells, we evaluated their effects on the release of complete and incomplete viral particles. Overproduction of LHBs inhibited the release of all surface proteins, which increased the ratio of naked capsids/virions. This effect was accompanied by the elevated extracellular HBV RNA. On the other hand, overexpression of M/SHBs greatly improved the secretion of enveloped viral and subviral particles. visualization of viral DNA and LHBs revealed intracellular retention of mature virions when LHBs were overexpressed. These results indicate that the molecular decision on secretion of enveloped or unenveloped viral particles is modulated by the intracellular ratio of large, middle and small surface antigens. This mechanism may be relevant in the progression and resolution of HBV-induced chronic liver disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.001733 | DOI Listing |
Nat Protoc
January 2025
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel.
Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis.
View Article and Find Full Text PDFSci Rep
January 2025
Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFCell Death Dis
January 2025
Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy unit, University of Fribourg, CH-1700, Fribourg, Switzerland.
Cell death mediated by executioner caspases is essential during organ development and for organismal homeostasis. The mechanistic role of activated executioner caspases in antibacterial defense during infections with intracellular bacteria, such as Listeria monocytogenes, remains elusive. Cell death upon intracellular bacterial infections is considered altruistic to deprive the pathogens of their protective niche.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro, but their role in infection and pathogenesis is unknown. To examine their in vivo function in an animal model evolutionarily closely related to humans, we identified and characterized Rh05, Rh152/151 and Rh173 as the complete set of vFcγRs encoded by rhesus CMV (RhCMV). Each one of these proteins displays functional similarities to their prospective HCMV orthologs with respect to antagonizing host FcγR activation in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!