Optimization of Heterologous Glucoraphanin Production .

ACS Synth Biol

Department of Plant Biology, University of California, Davis, California 95616, United States.

Published: May 2022

Glucoraphanin is a plant specialized metabolite found in cruciferous vegetables that has long been a target for production in a heterologous host because it can subsequently be hydrolyzed to form the chemopreventive compound sulforaphane before and during consumption. However, previous studies have only been able to produce small amounts of glucoraphanin in heterologous plant and microbial systems compared to the levels found in glucoraphanin-producing plants, suggesting that there may be missing auxiliary genes that play a role in improving production . In an effort to identify auxiliary genes required for high glucoraphanin production, we leveraged transient expression in to screen a combination of previously uncharacterized coexpressed genes and rationally selected genes alongside the glucoraphanin biosynthetic pathway. This strategy alleviated metabolic bottlenecks, which improved glucoraphanin production by 4.74-fold. Our optimized glucoraphanin biosynthetic pathway provides a pathway amenable for high glucoraphanin production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.2c00030DOI Listing

Publication Analysis

Top Keywords

glucoraphanin production
16
glucoraphanin
8
auxiliary genes
8
high glucoraphanin
8
glucoraphanin biosynthetic
8
biosynthetic pathway
8
production
6
optimization heterologous
4
heterologous glucoraphanin
4
production glucoraphanin
4

Similar Publications

Background/objectives: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, for which a definitive cure is still missing. Recently, natural compounds have been investigated for their possible neuroprotective role, including the bioactivated product of glucoraphanin (GRA), the sulforaphane (SFN), which is highly rich in cruciferous vegetables. It is known that SFN alleviates neuronal dysfunction, apoptosis, and oxidative stress in the brain.

View Article and Find Full Text PDF

Comprehensive Analysis of Bioactive Compounds, Functional Properties, and Applications of Broccoli By-Products.

Foods

December 2024

Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain.

Broccoli by-products, traditionally considered inedible, possess a comprehensive nutritional and functional profile. These by-products are abundant in glucosinolates, particularly glucoraphanin, and sulforaphane, an isothiocyanate renowned for its potent antioxidant and anticarcinogenic properties. Broccoli leaves are a significant source of phenolic compounds, including kaempferol and quercetin, as well as pigments, vitamins, and essential minerals.

View Article and Find Full Text PDF

Broccoli is recognized for its health benefits, attributed to the high concentrations of glucoraphanin (GR). GR must be hydrolyzed by myrosinase (Myr) to form the bioactive sulforaphane (SF). The primary challenge in delivering SF in the upper gastrointestinal (GI) tract- is improving hydrolysis of GR to SF.

View Article and Find Full Text PDF

Glucosinolates (GSLs) are secondary metabolites in Brassicaceae plants and play a defensive role against a variety of abiotic and biotic stresses. Also, it exhibits anti-cancer activity against cancer cell in human. Different profiles of aliphatic GSL compounds between radish and Chinese cabbage were previously reported.

View Article and Find Full Text PDF

Glucosinolates, commonly found in Brassica vegetables, are hydrolyzed by myrosinase to form bioactive isothiocyanates, unless specifier proteins redirect the degradation to less bioactive nitriles and epithionitriles. Here, the tissue-specific impact of specifier proteins on the outcome of glucosinolate hydrolysis in nine kohlrabi tissues was investigated. Glucosinolates and their hydrolysis product profiles, epithiospecifier protein and myrosinase activity, and protein abundance patterns of key glucosinolate biosynthesis, transport and hydrolysis enzymes were determined and correlated to the metabolites in the kohlrabi tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!