A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Asymmetric Contribution of Blastomere Lineages of First Division of the Zygote to Entire Human Body Using Post-Zygotic Variants. | LitMetric

Background: In humans, after fertilization, the zygote divides into two 2n diploid daughter blastomeres. During this division, DNA is replicated, and the remaining mutually exclusive genetic mutations in the genome of each cell are called post-zygotic variants. Using these somatic mutations, developmental lineages can be reconstructed. How these two blastomeres are contributing to the entire body is not yet identified. This study aims to evaluate the cellular contribution of two blastomeres of 2-cell embryos to the entire body in humans using post-zygotic variants based on whole genome sequencing.

Methods: Tissues from different anatomical areas were obtained from five donated cadavers for use in single-cell clonal expansion and bulk target sequencing. After conducting whole genome sequencing, computational analysis was applied to find the early embryonic mutations of each clone. We developed our in-house bioinformatics pipeline, and filtered variants using strict criteria, composed of mapping quality, base quality scores, depth, soft-clipped reads, and manual inspection, resulting in the construction of embryological phylogenetic cellular trees.

Results: Using our in-house pipeline for variant filtering, we could extract accurate true positive variants, and construct the embryological phylogenetic trees for each cadaver. We found that two daughter blastomeres, L1 and L2 (lineage 1 and 2, respectively), derived from the zygote, distribute unequally to the whole body at the clonal level. From bulk target sequencing data, we validated asymmetric contribution by means of the variant allele frequency of L1 and L2. The asymmetric contribution of L1 and L2 varied from person to person.

Conclusion: We confirmed that there is asymmetric contribution of two daughter blastomeres from the first division of the zygote across the whole human body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294097PMC
http://dx.doi.org/10.1007/s13770-022-00443-7DOI Listing

Publication Analysis

Top Keywords

asymmetric contribution
16
post-zygotic variants
12
daughter blastomeres
12
division zygote
8
human body
8
blastomeres division
8
entire body
8
bulk target
8
target sequencing
8
embryological phylogenetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!