Mycobacterial granuloma formation involves significant stromal remodeling including the growth of leaky, granuloma-associated vasculature. These permeable blood vessels aid mycobacterial growth, as antiangiogenic or vascular normalizing therapies are beneficial host-directed therapies in preclinical models of tuberculosis across host-mycobacterial pairings. Using the zebrafish-Mycobacterium marinum infection model, we demonstrate that vascular normalization by inhibition of vascular endothelial protein tyrosine phosphatase (VE-PTP) decreases granuloma hypoxia, the opposite effect of hypoxia-inducing antiangiogenic therapy. Inhibition of VE-PTP decreased neutrophil recruitment to granulomas in adult and larval zebrafish, and decreased the proportion of neutrophils that extravasated distal to granulomas. Furthermore, VE-PTP inhibition increased the accumulation of T cells at M. marinum granulomas. Our study provides evidence that, similar to the effect in solid tumors, vascular normalization during mycobacterial infection increases the T cell:neutrophil ratio in lesions which may be correlates of protective immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053305 | PMC |
http://dx.doi.org/10.1093/femspd/ftac009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!