The dramatic convergence of molecular biology, genomics, proteomics, metabolomics, bioinformatics, and artificial intelligence has provided a substrate for deep understanding of the biological basis of health and disease. Systems biology is a holistic, dynamic, integrative, cross-disciplinary approach to biological complexity that embraces experimentation, technology, computation, and clinical translation. Systems Medicine integrates genome analyses and longitudinal deep phenotyping with biological pathways and networks to understand mechanisms of disease, identify relevant blood biomarkers, define druggable molecular targets, and enhance the maintenance or restoration of wellness. Two programs initiated our understanding of data-driven population-based wellness. The Pioneer 100 Study of Scientific Wellness and the much larger Arivale commercial program that followed had two spectacular results: demonstrating the feasibility and utility of collecting longitudinal multiomic data, and then generating dense, dynamic data clouds for each individual to utilize actionable metrics for promoting health and preventing disease when combined with personalized coaching. Future developments in these domains will enable better population health and personal, preventive, predictive, participatory (P4) health care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2265-0_15 | DOI Listing |
Int J Biol Macromol
January 2025
School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:
Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northeastern University, Corrosion and Protection Center, NO. 3-11, Wenhua Road, Heping District, Shenyang, P. R. China, Shenyang, CHINA.
The dense passive film on 316L stainless steel is the key in its corrosion resistance. Its interactions with an electroactive biofilm are critical in deciphering microbial corrosion. Herein, an in-depth investigation using genetic manipulations and addition of an exogenous electron mediator found that extracellular electron transfer (EET) mediated by the electroactive S.
View Article and Find Full Text PDFSingle-cell RNA-seq analysis characterizes developmental mechanisms of cellular differentiation, lineage determination, and reprogramming with differential conditioning of the microenvironment. In this article, the underlying dynamics are formulated via optimal transport with algorithms that calculate the transition probability of the state of cell dynamics over time. The algorithmic biases of optimal transport (OT) due to entropic regularization are balanced by Sinkhorn divergence, which normally de-biases the regularized transport by centering them.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.
View Article and Find Full Text PDFNat Phys
September 2024
School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!