Ultrasound-targeted microbubble destruction (UTMD) has been a promising noninvasive tool for organ- or tissue-specific gene or drug delivery. This study aimed to explore the function of F-box protein 11 (FBXO11), an E3 ubiquitin ligase, in the development of pancreatic cancer (PCa). Differentially expressed genes in PCa were identified using the GSE62452 and GSE28735 datasets, and FBXO11 was significantly highly expressed in PCa. UTMD-mediated FBXO11 silencing significantly suppressed growth activity, epithelial-mesenchymal transition, migration, and invasion while reduced apoptosis of PCa cells in vitro and reduced the growth and metastasis of xenograft tumors in vivo. Importantly, UTMD-mediated sh-FBXO11 showed more pronounced tumor-suppressive effects than direct administration of sh-FBXO11 alone. The potential substrates of FBXO11 as an E3 ubiquitin ligase were predicted using the Ubibrowser. TP53 was predicted and validated as a downstream substrate of FBXO11. FBXO11 induced ubiquitination and degradation of the tumor suppressor protein TP53 to induce PCa progression. In conclusion, this study suggests that silencing of FBXO11, especially that mediated by UTMD, might suppress the malignant biological behaviors of PCa cells and serve as a potential therapeutic strategy for PCa management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13577-022-00700-w | DOI Listing |
Cardiovasc Toxicol
December 2024
Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
Gene therapy has received great attention as a therapeutic approach to improve cardiac function post-myocardial infarction (MI), but its limitation lies in the lack of targeting. This study explored the use of ultrasound-targeted microbubble destruction (UTMD) technique to deliver β-catenin gene to the myocardium, aiming to evaluate its efficacy in preventing cardiac dysfunction post-MI. A cationic microbubble solution containing β-catenin gene pcDNA3.
View Article and Find Full Text PDFInt J Pharm X
December 2024
Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
Eur J Pharm Biopharm
December 2024
Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China; The Department of Medical Ultrasound, First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Guangdong Province, China. Electronic address:
Arterial thrombotic disease is a common and serious clinical medical problem. Nitric oxide (NO), as a therapeutic gas, can delay the progression of thrombosis and reduce tissue ischemia and hypoxia damage. However, systemic delivery of NO causes complications, and NO in the body is easily cleared by hemoglobin in the blood.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
October 2024
Department of Pharmaceutical, Ningbo Yinzhou Second Hospital, Ningbo 315100, China.
To investigate the therapeutic effects and mechanisms of Ultrasound-targeted microbubble destruction (UTMD) technology combined with CoQ10 loaded PEGylated nanoliposomes (CoQ10-PEG-lips) on diabetic cardiomyopathy (DCM) in rats. CoQ10-PEG-lips were prepared using the thin-film dispersion method combined with ultrasonic hydration, followed by quality assessment. Sixty healthy and clean male SD rats were selected, and 50 were randomly chosen using a random number table to establish a type 1 diabetes mellitus (DM) model via a single intraperitoneal injection of streptozotocin.
View Article and Find Full Text PDFBiomaterials
February 2025
Department of Cardiology, University of Nebraska Medical Center, Omaha, NE, NE 68198, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!