The effect of the printing temperature on 4D DLP printed pNIPAM hydrogels.

Soft Matter

Department of Mechanical Engineering, York University, 4700 Keele Steet, Toronto, ON, M3J 1P3, Canada.

Published: May 2022

Additive manufacturing (AM), in its little more than 40 years of existence, has already established itself as a technology with enormous potential for several fields, especially the ones that require complex, high resolution, small structures, such as tissue engineering. This field has been especially attracted to the most recent AM evolution, 4D printing, due to its ability to create structures responsive to external stimuli. Among the range of materials that are simultaneously suitable for 4D printing and biological uses, poly(-isopropylacrylamide) (pNIPAM) stands out. pNIPAM presents exceptional characteristics such as a low critical solution temperature (LCST) close to the human physiological temperature and biocompatibility with several cell types. However, these characteristics are greatly affected by processing parameters. In this work, pNIPAM hydrogels were manufactured by AM using digital light processing; the printing temperature was varied between 5, 10 and 15 °C to analyze how it affects the hydrogels' final properties. The impact on hydrogels was analyzed by differential scanning calorimetry (DSC), swelling, deswelling and reswelling analyses, scanning electron microscopy (SEM) images, and compression tests. Based on our results increasing the production temperature of the hydrogels by 10 °C led to a decrease of more than 50% in the maximum swelling capacity, approximately 10% increase in water retention, and 6.5 °C variation in the LCST. The justification for such behaviour lies in the increase of the crosslinking rate and thickening of the external layer of hydrogels, which prevents the free movement of water from its interior.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm00201aDOI Listing

Publication Analysis

Top Keywords

printing temperature
8
pnipam hydrogels
8
hydrogels
5
printing
4
temperature dlp
4
dlp printed
4
pnipam
4
printed pnipam
4
hydrogels additive
4
additive manufacturing
4

Similar Publications

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

Foaming ink for 3D-printing of ultralight and hyperelastic graphene architectures: Multiscale design and ultra-efficient electromagnetic interference shielding.

J Colloid Interface Sci

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China. Electronic address:

Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries.

View Article and Find Full Text PDF

Synthesis and Polymerization of Thiophene-Bearing 2-Oxazolines and 2-Oxazines.

Macromol Rapid Commun

January 2025

Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.

Intrinsically conductive polymers have garnered a great deal of attention for use in medical and bioelectronic applications. Despite this, challenges associated with the mechanical stability, processability, and fabrication of conducting polymers have limited their utility. To circumvent these limitations, thiophene substituted 2-oxazolines (2Ox) and 2-oxazines (2Ozi) are introduced, which can be polymerized to form a thermally stable and potentially melt-processable polymers as precursors for conductive polymers.

View Article and Find Full Text PDF

Sweet potato ( (L.) Lam.) is a tuber root crop with high economical potential and China is responsible for harvesting roughly 70% of the world production.

View Article and Find Full Text PDF

Heat stroke (HS) represents a life‑endangering condition that is due to an imbalance between heat generation and dissipation, owing to exposure to hot environments or strenuous exercise. HS is a medical condition that is gaining increased prevalence throughout the world due to a steady rise in temperature, and massive mortalities have been recorded among vulnerable populations. In 2024, extreme heat waves led to increased cases of HS and related fatalities globally, particularly in Karachi, Pakistan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!