Nigeria's energy review: Focusing on solar energy potential and penetration.

Environ Dev Sustain

Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus, Penryn, TR10 9FE UK.

Published: April 2022

In Nigeria, the rapid population increase and the overreliance on fossil fuel have created significant environmental, health, political, and economic consequences leading to severe socio-economic drawbacks. These factors have developed a wide gap between energy demand and supply due to insufficient local production, necessitating a clean energy supply for all. The photovoltaic device's economic and environmental merits have made it the most suitable clean energy alternative to help developing countries such as Nigeria achieve the SDG-7. However, apart from the device's low efficiency, which is undergoing intensive study globally, other factors affect the penetration of the technology in developing countries, particularly Nigeria. This report systematically reviews the literature on the country's energy crisis and renewable energy potential, leading to an overview of solar energy potential and penetration. The potential of the technology and its penetration in the country were provided. A list highlighting challenges hindering technology penetration was also provided, and a solution for each was recommended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007055PMC
http://dx.doi.org/10.1007/s10668-022-02308-4DOI Listing

Publication Analysis

Top Keywords

energy potential
12
solar energy
8
potential penetration
8
clean energy
8
developing countries
8
countries nigeria
8
technology penetration
8
energy
7
penetration
5
nigeria's energy
4

Similar Publications

Minimum Energy Conical Intersection Optimization Using DFT/MRCI(2).

J Chem Theory Comput

January 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5,Canada.

The combined density functional theory and multireference configuration interaction (DFT/MRCI) method is a semiempirical electronic structure approach that is both computationally efficient and has predictive accuracy for the calculation of electronic excited states and for the simulation of electronic spectroscopies. However, given that the reference space is generated via a selected-CI procedure, a challenge arises in the construction of smooth potential energy surfaces. To address this issue, we treat the local discontinuities that arise as noise within the Gaussian progress regression framework and learn the surfaces by explicitly incorporating and optimizing a white-noise kernel.

View Article and Find Full Text PDF

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

A protocol for the investigation of the intramolecular vibrational energy redistribution problem: the isomerization of nitrous acid as a case of study.

Phys Chem Chem Phys

January 2025

Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, 05508-900, Brazil.

The conformational isomerization of nitrous acid (HONO) promoted by excitation of the or stretching normal coordinates is the first observed case of an infrared-induced photochemical reaction. The energy captured by the excited normal modes is redistributed into a highly excited vibrational level of the torsion normal coordinate, which is the isomerization reaction coordinate. Herein, we present simple numerical methods to qualitatively investigate the coupling between the normal coordinates and the possible gateways for vibrational energy redistribution leading to the isomerization process.

View Article and Find Full Text PDF

Objective: Assess the level of radiation-related knowledge (RRK) and nuclear energy-related knowledge (NERK) among residents near the Sanmen Nuclear Power Plant, the first project adopted the Advanced Passive Pressurized Water Reactor (AP1000) technology.

Methods: In this study, respondents were selected using stratified multi-stage random sampling for residents aged 18 years and above living within 30 kilometers of the Sanmen Nuclear Power Station. Respondents were surveyed face-to-face by investigators who received standardized training.

View Article and Find Full Text PDF

Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!