A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A digital twin ecosystem for additive manufacturing using a real-time development platform. | LitMetric

A digital twin ecosystem for additive manufacturing using a real-time development platform.

Int J Adv Manuf Technol

Industrial and Systems Engineering, Auburn University, 357-359 W Magnolia Ave, Auburn, AL 36832 USA.

Published: April 2022

Additive manufacturing is often used in rapid prototyping and manufacturing, allowing the creation of lighter, more complex designs that are difficult or too expensive to build using traditional manufacturing methods. This work considers the implementation of a novel digital twin ecosystem that can be used for testing, process monitoring, and remote management of an additive manufacturing-fused deposition modeling machine in a simulated virtual environment. The digital twin ecosystem is comprised of two approaches. One approach is data-driven by an open-source 3D printer web controller application that is used to capture its status and key parameters. The other approach is data-driven by externally mounted sensors to approximate the actual behavior of the 3D printer and achieve accurate synchronization between the physical and virtual 3D printers. We evaluate the sensor-data-driven approach against the web controller approach, which is considered to be the ground truth. We achieve near-real-time synchronization between the physical machine and its digital counterpart and have validated the digital twin in terms of position, temperature, and run duration. Our digital twin ecosystem is cost-efficient, reliable, replicable, and hence can be utilized to provide legacy equipment with digital twin capabilities, collect historical data, and generate analytics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007262PMC
http://dx.doi.org/10.1007/s00170-022-09164-6DOI Listing

Publication Analysis

Top Keywords

digital twin
24
twin ecosystem
16
additive manufacturing
8
approach data-driven
8
web controller
8
synchronization physical
8
digital
7
twin
5
ecosystem
4
ecosystem additive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!