The functions of the tumor microenvironment (TME) are orchestrated by precise spatial organization of specialized cells, yet little is known about the multicellular structures that form within the TME. Here we systematically mapped TME structures in situ using imaging mass cytometry and multitiered spatial analysis of 693 breast tumors linked to genomic and clinical data. We identified ten recurrent TME structures that varied by vascular content, stromal quiescence versus activation, and leukocyte composition. These TME structures had distinct enrichment patterns among breast cancer subtypes, and some were associated with genomic profiles indicative of immune escape. Regulatory and dysfunctional T cells co-occurred in large 'suppressed expansion' structures. These structures were characterized by high cellular diversity, proliferating cells and enrichment for BRCA1 and CASP8 mutations and predicted poor outcome in estrogen-receptor-positive disease. The multicellular structures revealed here link conserved spatial organization to local TME function and could improve patient stratification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612730 | PMC |
http://dx.doi.org/10.1038/s41588-022-01041-y | DOI Listing |
Life (Basel)
January 2025
Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China.
In the field of digestive system tumor research, spatial transcriptomics technologies are used to delve into the spatial structure and the spatial heterogeneity of tumors and to analyze the tumor microenvironment (TME) and the inter-cellular interactions within it by revealing gene expression in tumors. These technologies are also instrumental in the diagnosis, prognosis, and treatment of digestive system tumors. This review provides a concise introduction to spatial transcriptomics and summarizes recent advances, application prospects, and technical challenges of these technologies in digestive system tumor research.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
MXenzymes, a promising class of catalytic therapeutic material, offer great potential for tumor treatment, but they encounter significant obstacles due to suboptimal catalytic efficiency and kinetics in the tumor microenvironment (TME). Herein, this study draws inspiration from the electronic structure of transition metal vanadium, proposing the leverage of TME specific-features to induce structural transformations in sheet-like vanadium carbide MXenzymes (TVMz). These transformations trigger cascading catalytic reactions that amplify oxidative stress, thereby significantly enhancing multimodal tumor therapy.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.
View Article and Find Full Text PDFAm J Clin Exp Immunol
December 2024
Department of Surgery, Medical Faculty, Trakia University Stara Zagora, Bulgria.
Tertiary lymphoid structures (TLS), formerly recognized as Crohn's-like structures, serve as crucial biomarkers for evaluating the progression of colorectal cancer (CRC). Understanding their spatial distribution, cellular composition, and interactions within CRC is paramount for comprehending the immune response in the tumor microenvironment (TME). TLS are comprised of a T-cellular compartment and a B-cellular compartment, the latter encompassing follicular dendritic cells (FDCs), high endothelial venules (HEVs), and lymphatic vessels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!