Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron (II) phthalocyanine (FePc) is loaded on the surface of the tourmaline (TM) by the reflow method to obtain FePc/TM. This research effectively prevents the π-π stacking of FePc, increased the effective utilization rate of PMS activation under solar light, and further improved the catalytic performance of the catalytic system. The catalytic oxidation efficiency of FePc/TM on carbamazepine (CBZ) and sulfadiazine (SD) can reach 99% under solar light for 15 and 5 min, the total organic carbon (TOC) removal rate can reach 58% and 69% under solar light for 120 min. After 6 cycles, the CBZ removal rate remained above 95%. In addition, the FePc/TM catalytic system has an excellent removal rate for other pharmaceuticals. The results of spin-trapped electron paramagnetic resonance and classical quenching experiments show that FePc/TM can effectively activate PMS to generate active species under solar light, including superoxide radical (•O), singlet oxygen (O), hydroxyl radicals(•OH), and sulphate radicals (SO•). The intermediates of CBZ were identified by Ultra-high performance liquid chromatography and high resolution mass spectrometry, and the degradation pathway was proposed. As the reaction progresses, all CBZ and intermediates are reduced and converted into small acids, or mineralized to HO, CO. This work provides an alternative method for the design of efficient activation of PMS activation catalysts under solar light to eliminate residual pharmaceuticals in actual water bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2022.2064236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!