Inosine triphosphate pyrophosphatases (ITPases) are ubiquitous house-cleaning enzymes that specifically recognize deaminated purine nucleotides and catalyze their hydrolytic cleavage. In this work, we have characterized the Trypanosoma brucei ITPase ortholog (TbITPA). Recombinant TbITPA efficiently hydrolyzes (deoxy)ITP and XTP nucleotides into their respective monophosphate form. Immunolocalization analysis performed in bloodstream forms suggests that the primary role of TbITPA is the exclusion of deaminated purines from the cytosolic nucleoside triphosphate pools. Even though ITPA-knockout bloodstream parasites are viable, they are more sensitive to inhibition of IMP dehydrogenase with mycophenolic acid, likely due to an expansion of IMP, the ITP precursor. On the other hand, TbITPA can also hydrolyze the activated form of the antiviral ribavirin although in this case, the absence of ITPase activity in the cell confers protection against this nucleoside analog. This unexpected phenotype is dependant on purine availability and can be explained by the fact that ribavirin monophosphate, the reaction product generated by TbITPA, is a potent inhibitor of trypanosomal IMP dehydrogenase and GMP reductase. In summary, the present study constitutes the first report on a protozoan inosine triphosphate pyrophosphatase involved in the removal of harmful deaminated nucleotides from the cytosolic pool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9016069 | PMC |
http://dx.doi.org/10.1038/s41598-022-10149-4 | DOI Listing |
Foods
October 2024
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
Pharmacogenomics
October 2024
Laboratory of Pharmacology, University Hospital of Monastir, Faculty of Medicine, University of Monastir, Tunisia.
Cell Rep Med
October 2024
Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada. Electronic address:
Patients with brain metastases (BM) face a 90% mortality rate within one year of diagnosis and the current standard of care is palliative. Targeting BM-initiating cells (BMICs) is a feasible strategy to treat BM, but druggable targets are limited. Here, we apply Connectivity Map analysis to lung-, breast-, and melanoma-pre-metastatic BMIC gene expression signatures and identify inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo GTP synthesis pathway, as a target for BM.
View Article and Find Full Text PDFPurinergic Signal
October 2024
Department of Graduate Studies in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil.
Anal Chem
October 2024
Fred Hutchinson Cancer Center, Seattle, Washington 98109, United States.
In cold human blood, the anomalous dynamics of adenosine triphosphate (ATP) result in the progressive accumulation of adenosine diphosphate (ADP), adenosine monophosphate (AMP), inosine monophosphate (IMP), inosine, and hypoxanthine. While the ATP, ADP, AMP, and IMP are confined to red blood cells (RBCs), inosine and hypoxanthine are excreted into plasma/serum. The plasma/serum levels of inosine and hypoxanthine depend on the temperature of blood and the plasma/serum contact time with the RBCs, and hence they represent robust biomarkers for evaluating the preanalytical quality of plasma/serum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!