Stapled peptides are promising scaffolds for inhibiting protein-protein interactions in cells, including between the intracellular oncoprotein MDM2 and p53. Herein, we have investigated the potential utility of a stapled peptide, VIP116, for developing radiolabeled agents targeting MDM2. VIP116 was radioiodinated using the prosthetic agent N-succinimidyl-3-[*I]iodobenzoate ([*I]SIB). The resulting labeled peptide [*I]SIB-VIP116 exhibited high uptake (165.3 ± 27.7%/mg protein) and specificity in SJSA-1 tumor cells. Tissue distribution studies of [*I]SIB-VIP116 revealed a peak tumor uptake of 2.19 ± 0.56 percent injected dose per gram (%ID/g) in SJSA-1 xenografts at 2 h post-injection, which was stable until 6 h. [*I]SIB-VIP116 exhibited high activity (8.33 ± 1.18%ID/g) in the blood pool but had high tumor-to-muscle ratios (12.0 ± 5.7), at 30 min. Metabolic stability studies in mice indicated that about 80% of the activity in plasma was intact [*I]SIB-VIP116 at 4 h. Our results confirm the cell permeability and specific binding of [*I]SIB-VIP116 to MDM2 and the suitability of the VIP116 scaffold for radiolabeled probe development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940446 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2022.128725 | DOI Listing |
Proteins
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners.
View Article and Find Full Text PDFCancer Lett
December 2024
Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China. Electronic address:
J Am Chem Soc
December 2024
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India.
Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).
View Article and Find Full Text PDFJ Med Chem
December 2024
Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France.
Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Université de Bordeaux, CBMN UMR5248, IECB, 2, rue Robert Escarpit, 33607, PESSAC, FRANCE.
Peptide stapling has emerged as a versatile approach in drug discovery to reinforce secondary structure elements especially α-helices and improve properties of linear bioactive peptides. Inspired by the prevalence of arginine in protein-protein and protein-DNA interfaces, we investigated guanidinium-stapling as a means to constrain helical peptides. Guanidinium stapling was readily achieved on solid support, utilizing two orthogonally protected lysine or unatural α-amino acid residues with an amino function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!