Soil washing is considered a highly efficient technology due to its higher removal rate of multiple heavy metals from contaminated soil. However, previous studies on Cd, Pb and As washing agents for soils with complex contaminations did not consider the differences in As and Cd/Pb properties, resulting in the lack of effective washing compounds and washing conditions for soils with complex contaminations. Moreover, most traditional washing agents can cause secondary pollution. In this study, HEDTA and lactic acid (LA) treatments resulted in a higher Cd and Pb removal, while 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) was more effective in As removal. Most importantly, a new washing strategy was proposed with a new combined high-efficiency washing agents consisting of HEDP + LA + FeCl with a ratio of 6:3:1. Considering washing efficiency and consumption under optimal washing conditions, i.e. the soil/liquid (S/L) ratio of 1:20 and washing time of 48 h, the rates of Cd, Pb and As removal were 79.93%, 69.84% and 61.55%, respectively. In addition, washing process could influence the speciation of heavy metals, especially oxidizable and residual Cd and Pb fractions, as well as reducible As fraction. The washing process using the new washing agent can significantly reduce the pollution level and health risk of Cd, Pb and As contamination. The results of this study can provide an efficient washing agent for the remediation of heavy metal-contaminated soils at smelting sites, which will help protect human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.134581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!